Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2022, Volume 58, Issue 1, Pages 3–15
DOI: https://doi.org/10.31857/S0555292322010016
(Mi ppi2359)
 

This article is cited in 3 scientific papers (total in 3 papers)

Coding Theory

Weakly resolvable block designs and nonbinary codes meeting the Johnson bound

L. A. Bassalygo, V. A. Zinoviev, V. S. Lebedev

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We present two new families of resolvable block designs. We introduce the notion of a weakly resolvable block design and prove the equivalence of such designs and nonbinary codes meeting the Johnson bound. We construct a new family of such codes.
Keywords: resolvable block design, weakly resolvable block design, nonbinary code, Johnson bound.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00364
20-51-18002
The research was carried out at the Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences and was supported by the Russian foundation for Basic Research, project no. 19-01-00364, and the Bulgarian National Science Fund, grant no. 20-51-18002.
Received: 16.04.2021
Revised: 11.09.2021
Accepted: 01.10.2021
English version:
Problems of Information Transmission, 2022, Volume 58, Issue 1, Pages 1–12
DOI: https://doi.org/10.1134/S003294602201001X
Bibliographic databases:
Document Type: Article
UDC: 621.391.1 : 519.725
Language: Russian
Citation: L. A. Bassalygo, V. A. Zinoviev, V. S. Lebedev, “Weakly resolvable block designs and nonbinary codes meeting the Johnson bound”, Probl. Peredachi Inf., 58:1 (2022), 3–15; Problems Inform. Transmission, 58:1 (2022), 1–12
Citation in format AMSBIB
\Bibitem{BasZinLeb22}
\by L.~A.~Bassalygo, V.~A.~Zinoviev, V.~S.~Lebedev
\paper Weakly resolvable block designs and nonbinary codes meeting the Johnson bound
\jour Probl. Peredachi Inf.
\yr 2022
\vol 58
\issue 1
\pages 3--15
\mathnet{http://mi.mathnet.ru/ppi2359}
\crossref{https://doi.org/10.31857/S0555292322010016}
\transl
\jour Problems Inform. Transmission
\yr 2022
\vol 58
\issue 1
\pages 1--12
\crossref{https://doi.org/10.1134/S003294602201001X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000780937000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128477025}
Linking options:
  • https://www.mathnet.ru/eng/ppi2359
  • https://www.mathnet.ru/eng/ppi/v58/i1/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :3
    References:32
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024