Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2021, Volume 57, Issue 4, Pages 24–33
DOI: https://doi.org/10.31857/S0555292321040021
(Mi ppi2352)
 

This article is cited in 2 scientific papers (total in 2 papers)

Information Theory

On the maximum $f$-divergence of probability distributions given the value of their coupling

V. V. Prelov

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: The paper is a supplement to the author's paper [1]. Here we present explicit upper bounds (which are optimal in some cases) on the maximum value of the $f$-divergence $D_f(P \| Q)$ of discrete probability distributions $P$ and $Q$ provided that the distribution $Q$ (or its minimal component $q_{\min}$) and the value of the coupling of $P$ and $Q$ are fixed. We also obtain an explicit expression for the maximum value of the divergence $D_f(P \| Q)$ provided that only the value of the coupling of $P$ and $Q$ is given. Results of [1] concerning the Kullback–Leibler divergence and $\chi^2$-divergence are particular cases of the results proved in the present paper.
Keywords: $f$-divergence, Kullback–Leibler divergence, $\chi^2$-divergence, coupling of discrete probability distributions.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00364
The research was supported in part by the Russian Foundation for Basic Research, project no. 19-01-00364.
Received: 12.11.2021
Revised: 16.11.2021
Accepted: 16.11.2021
English version:
Problems of Information Transmission, 2021, Volume 57, Issue 4, Pages 321–330
DOI: https://doi.org/10.1134/S0032946021040025
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.72
Language: Russian
Citation: V. V. Prelov, “On the maximum $f$-divergence of probability distributions given the value of their coupling”, Probl. Peredachi Inf., 57:4 (2021), 24–33; Problems Inform. Transmission, 57:4 (2021), 321–330
Citation in format AMSBIB
\Bibitem{Pre21}
\by V.~V.~Prelov
\paper On the maximum $f$-divergence of probability distributions given the value of their coupling
\jour Probl. Peredachi Inf.
\yr 2021
\vol 57
\issue 4
\pages 24--33
\mathnet{http://mi.mathnet.ru/ppi2352}
\crossref{https://doi.org/10.31857/S0555292321040021}
\transl
\jour Problems Inform. Transmission
\yr 2021
\vol 57
\issue 4
\pages 321--330
\crossref{https://doi.org/10.1134/S0032946021040025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000742673500002}
Linking options:
  • https://www.mathnet.ru/eng/ppi2352
  • https://www.mathnet.ru/eng/ppi/v57/i4/p24
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:96
    Full-text PDF :1
    References:21
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024