Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2021, Volume 57, Issue 4, Pages 3–23
DOI: https://doi.org/10.31857/S055529232104001X
(Mi ppi2351)
 

This article is cited in 1 scientific paper (total in 1 paper)

Information Theory

New lower bounds on the fraction of correctable errors under list decoding in combinatorial binary communication channels

A. G. D'yachkov, D. Yu. Goshkoder

Probability Theory Department, Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: The aim of the paper is to revive and develop results of an unpublished manuscript of A.G. D'yachkov. We consider a discrete memoryless channel (DMC) and prove a theorem on the exponential expurgation bound for list decoding with fixed list size $L$. This result is an extension of the classical exponential error probability bound for optimal codes over a DMC to the list decoding model over a DMC. As applications of this result, we consider a memoryless binary symmetric channel (BSC) and a memoryless binary asymmetric channel ($\mathrm{Z}$-channel). For the both channels, we derive a lower bound on the fraction of correctable errors for zero-rate transmission over the corresponding channels under list decoding with a fixed list size $L$ at the channel output. For the $\mathrm{Z}$-channel, we obtain this bound for an arbitrary input alphabet distribution $(1-w,w)$; we also find the optimum value of the obtained bound and prove that the fraction of errors correctable by an optimal code tends to $1$ as the list size $L$ tends to infinity.
Keywords: discrete memoryless channel, binary symmetric channel, $\mathrm{Z}$-channel, fraction of correctable errors, expurgation bound, list decoding.
Received: 31.05.2021
Revised: 07.11.2021
Accepted: 08.11.2021
English version:
Problems of Information Transmission, 2021, Volume 57, Issue 4, Pages 301–320
DOI: https://doi.org/10.1134/S0032946021040013
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.724
Language: Russian
Citation: A. G. D'yachkov, D. Yu. Goshkoder, “New lower bounds on the fraction of correctable errors under list decoding in combinatorial binary communication channels”, Probl. Peredachi Inf., 57:4 (2021), 3–23; Problems Inform. Transmission, 57:4 (2021), 301–320
Citation in format AMSBIB
\Bibitem{DyaGos21}
\by A.~G.~D'yachkov, D.~Yu.~Goshkoder
\paper New lower bounds on the fraction of correctable errors under list decoding in combinatorial binary communication channels
\jour Probl. Peredachi Inf.
\yr 2021
\vol 57
\issue 4
\pages 3--23
\mathnet{http://mi.mathnet.ru/ppi2351}
\crossref{https://doi.org/10.31857/S055529232104001X}
\transl
\jour Problems Inform. Transmission
\yr 2021
\vol 57
\issue 4
\pages 301--320
\crossref{https://doi.org/10.1134/S0032946021040013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000742673500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123001418}
Linking options:
  • https://www.mathnet.ru/eng/ppi2351
  • https://www.mathnet.ru/eng/ppi/v57/i4/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :1
    References:20
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024