Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2021, Volume 57, Issue 3, Pages 3–16
DOI: https://doi.org/10.31857/S0555292321030013
(Mi ppi2344)
 

This article is cited in 6 scientific papers (total in 6 papers)

Coding Theory

On perfect and Reed–Muller codes over finite fields

A. M. Romanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (232 kB) Citations (6)
References:
Abstract: We consider error-correcting codes over a finite field with $q$ elements ($q$-ary codes). We study relations between single-error-correcting $q$-ary perfect codes and $q$-ary Reed–Muller codes. For $q\ge 3$ we find parameters of affine Reed–Muller codes of order $(q-1)m-2$. We show that affine Reed–Muller codes of order $(q-1)m-2$ are quasi-perfect codes. We propose a construction which allows to construct single-error-correcting $q$-ary perfect codes from codes with parameters of affine Reed–Muller codes. A modification of this construction allows to construct $q$-ary quasi-perfect codes with parameters of affine Reed–Muller codes.
Keywords: Reed–Muller code, affine Reed–Muller code, projective Reed–Muller code, Hamming code, perfect code, quasi-perfect code, MDS code, finite field.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences I.5.1., проект № 0314-2019-0017
The research was supported by the Fundamental Scientific Research Program no. I.5.1 of the Siberian Branch of the Russian Academy of Sciences, project no. 0314-2019-0017.
Received: 30.06.2020
Revised: 12.04.2021
Accepted: 04.06.2021
English version:
Problems of Information Transmission, 2021, Volume 57, Issue 3, Pages 199–211
DOI: https://doi.org/10.1134/S0032946021030017
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.725
Language: Russian
Citation: A. M. Romanov, “On perfect and Reed–Muller codes over finite fields”, Probl. Peredachi Inf., 57:3 (2021), 3–16; Problems Inform. Transmission, 57:3 (2021), 199–211
Citation in format AMSBIB
\Bibitem{Rom21}
\by A.~M.~Romanov
\paper On perfect and Reed--Muller codes over finite fields
\jour Probl. Peredachi Inf.
\yr 2021
\vol 57
\issue 3
\pages 3--16
\mathnet{http://mi.mathnet.ru/ppi2344}
\crossref{https://doi.org/10.31857/S0555292321030013}
\transl
\jour Problems Inform. Transmission
\yr 2021
\vol 57
\issue 3
\pages 199--211
\crossref{https://doi.org/10.1134/S0032946021030017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000704980200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85116527970}
Linking options:
  • https://www.mathnet.ru/eng/ppi2344
  • https://www.mathnet.ru/eng/ppi/v57/i3/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :8
    References:26
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024