|
This article is cited in 6 scientific papers (total in 6 papers)
Coding Theory
On perfect and Reed–Muller codes over finite fields
A. M. Romanov Sobolev Institute of Mathematics, Siberian Branch
of the Russian Academy of Sciences, Novosibirsk, Russia
Abstract:
We consider error-correcting codes over a finite field with $q$ elements ($q$-ary codes). We study relations between single-error-correcting $q$-ary perfect codes and $q$-ary Reed–Muller codes. For $q\ge 3$ we find parameters of affine Reed–Muller codes of order $(q-1)m-2$. We show that affine Reed–Muller codes of order $(q-1)m-2$ are quasi-perfect codes. We propose a construction which allows to construct single-error-correcting $q$-ary perfect codes from codes with parameters of affine Reed–Muller codes. A modification of this construction allows to construct $q$-ary quasi-perfect codes with parameters of affine Reed–Muller codes.
Keywords:
Reed–Muller code, affine Reed–Muller code, projective Reed–Muller code, Hamming code, perfect code, quasi-perfect code, MDS code, finite field.
Received: 30.06.2020 Revised: 12.04.2021 Accepted: 04.06.2021
Citation:
A. M. Romanov, “On perfect and Reed–Muller codes over finite fields”, Probl. Peredachi Inf., 57:3 (2021), 3–16; Problems Inform. Transmission, 57:3 (2021), 199–211
Linking options:
https://www.mathnet.ru/eng/ppi2344 https://www.mathnet.ru/eng/ppi/v57/i3/p3
|
Statistics & downloads: |
Abstract page: | 144 | Full-text PDF : | 8 | References: | 26 | First page: | 14 |
|