Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2021, Volume 57, Issue 2, Pages 36–43
DOI: https://doi.org/10.31857/S0555292321020029
(Mi ppi2339)
 

Coding Theory

Coding in a $\mathrm{Z}$-channel in case of many errors

V. S. Lebedeva, N. A. Polyanskiibc

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
b Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
c Technische Universität München, Munich, Germany
References:
Abstract: We prove that the maximum number of words in a code that corrects a fraction of $1/4+\varepsilon$ of asymmetric errors in a $\mathrm{Z}$-channel is $\Theta(\varepsilon^{-3/2})$ as $\varepsilon\to 0$.
Keywords: $\mathrm{Z}$-channel, minimum distance, constant-weight code.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00364
20-51-50007
Deutsche Forschungsgemeinschaft WA3907/1-1
The research of V.S. Lebedev was supported in part by the Russian Foundation for Basic Research, project nos. 19-01-00364 and 20-51-50007). The research of N.A. Polyanskii was carried out at the Technische Universität München and Skolkovo Institute of Science and Technology under partial support of the DFG grant, project no. WA3907/1-1.
Received: 14.12.2020
Revised: 25.03.2021
Accepted: 26.03.2021
English version:
Problems of Information Transmission, 2021, Volume 57, Issue 2, Pages 129–135
DOI: https://doi.org/10.1134/S0032946021020022
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.724
Language: Russian
Citation: V. S. Lebedev, N. A. Polyanskii, “Coding in a $\mathrm{Z}$-channel in case of many errors”, Probl. Peredachi Inf., 57:2 (2021), 36–43; Problems Inform. Transmission, 57:2 (2021), 129–135
Citation in format AMSBIB
\Bibitem{LebPol21}
\by V.~S.~Lebedev, N.~A.~Polyanskii
\paper Coding in a $\mathrm{Z}$-channel in case of many errors
\jour Probl. Peredachi Inf.
\yr 2021
\vol 57
\issue 2
\pages 36--43
\mathnet{http://mi.mathnet.ru/ppi2339}
\crossref{https://doi.org/10.31857/S0555292321020029}
\transl
\jour Problems Inform. Transmission
\yr 2021
\vol 57
\issue 2
\pages 129--135
\crossref{https://doi.org/10.1134/S0032946021020022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000671394500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109721911}
Linking options:
  • https://www.mathnet.ru/eng/ppi2339
  • https://www.mathnet.ru/eng/ppi/v57/i2/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :18
    References:26
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024