|
Coding Theory
Coding in a $\mathrm{Z}$-channel in case of many errors
V. S. Lebedeva, N. A. Polyanskiibc a Kharkevich Institute for Information Transmission Problems,
Russian Academy of Sciences, Moscow, Russia
b Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
c Technische Universität München, Munich, Germany
Abstract:
We prove that the maximum number of words in a code that corrects a fraction of $1/4+\varepsilon$ of asymmetric errors in a $\mathrm{Z}$-channel is $\Theta(\varepsilon^{-3/2})$ as $\varepsilon\to 0$.
Keywords:
$\mathrm{Z}$-channel, minimum distance, constant-weight code.
Received: 14.12.2020 Revised: 25.03.2021 Accepted: 26.03.2021
Citation:
V. S. Lebedev, N. A. Polyanskii, “Coding in a $\mathrm{Z}$-channel in case of many errors”, Probl. Peredachi Inf., 57:2 (2021), 36–43; Problems Inform. Transmission, 57:2 (2021), 129–135
Linking options:
https://www.mathnet.ru/eng/ppi2339 https://www.mathnet.ru/eng/ppi/v57/i2/p36
|
Statistics & downloads: |
Abstract page: | 129 | Full-text PDF : | 18 | References: | 26 | First page: | 15 |
|