Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2021, Volume 57, Issue 2, Pages 3–35
DOI: https://doi.org/10.31857/S0555292321020017
(Mi ppi2338)
 

Information Theory

Minimax theorems for finite blocklength lossy joint source-channel coding over an arbitrarily varying channel

A. S. Vora, A. A. Kulkarni

Systems and Control Engineering Group, Indian Institute of Technology Bombay, Mumbai, India
References:
Abstract: Motivated by applications in the security of cyber-physical systems, we pose the finite blocklength communication problem in the presence of a jammer as a zero-sum game between the encoder-decoder team and the jammer, by allowing the communicating team as well as the jammer only locally randomized strategies. The communicating team's problem is nonconvex under locally randomized codes, and hence, in general, a minimax theorem need not hold for this game. However, we show that approximate minimax theorems hold in the sense that the minimax and maximin values of the game approach each other asymptotically. In particular, for rates strictly below a critical threshold, both the minimax and maximin values approach zero, and for rates strictly above it, they both approach unity. We then show a second-order minimax theorem, i.e., for rates exactly approaching the threshold along a specific scaling, the minimax and maximin values approach the same constant value, that is neither zero nor one. Critical to these results is our derivation of finite blocklength bounds on the minimax and maximin values of the game and our derivation of second-order dispersion-based bounds.
Keywords: arbitrarily varying channels, zero-sum game, nonconvexity, stochastic codes.
Received: 20.06.2019
Revised: 17.12.2020
Accepted: 05.03.2021
English version:
Problems of Information Transmission, 2021, Volume 57, Issue 2, Pages 99–128
DOI: https://doi.org/10.1134/S0032946021020010
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.72 : 519.832
Language: Russian
Citation: A. S. Vora, A. A. Kulkarni, “Minimax theorems for finite blocklength lossy joint source-channel coding over an arbitrarily varying channel”, Probl. Peredachi Inf., 57:2 (2021), 3–35; Problems Inform. Transmission, 57:2 (2021), 99–128
Citation in format AMSBIB
\Bibitem{VorKul21}
\by A.~S.~Vora, A.~A.~Kulkarni
\paper Minimax theorems for finite blocklength lossy joint source-channel coding over an arbitrarily varying channel
\jour Probl. Peredachi Inf.
\yr 2021
\vol 57
\issue 2
\pages 3--35
\mathnet{http://mi.mathnet.ru/ppi2338}
\crossref{https://doi.org/10.31857/S0555292321020017}
\transl
\jour Problems Inform. Transmission
\yr 2021
\vol 57
\issue 2
\pages 99--128
\crossref{https://doi.org/10.1134/S0032946021020010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000671394500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109739003}
Linking options:
  • https://www.mathnet.ru/eng/ppi2338
  • https://www.mathnet.ru/eng/ppi/v57/i2/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:588
    Full-text PDF :7
    References:30
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024