Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2021, Volume 57, Issue 1, Pages 64–80
DOI: https://doi.org/10.31857/S0555292321010034
(Mi ppi2335)
 

This article is cited in 1 scientific paper (total in 1 paper)

Information Theory

The $f$-divergence and coupling of probability distributions

V. V. Prelov

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (232 kB) Citations (1)
References:
Abstract: We consider the problem of finding the minimum and maximum values of $f$-divergence for discrete probability distributions $P$ and $Q$ provided that one of these distributions and the value of their coupling are given. An explicit formula for the minimum value of the $f$-divergence under the above conditions is obtained, as well as a precise expression for its maximum value. This precise expression is not explicit in the general case, but in many special cases it allows us to write out both explicit formulas and simple upper bounds, which are sometimes optimal. Similar explicit formulas and upper bounds are also obtained for the Kullback–Leibler and $\chi^2$ divergences, which are the most important cases of the $f$-divergence.
Keywords: $f$-divergence, Kullback–Leibler divergence, $\chi^2$ divergence, coupling of discrete probability distributions.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00364
The research was supported in part by the Russian Foundation for Basic Research, project no. 19-01-00364.
Received: 17.11.2020
Revised: 04.01.2021
Accepted: 11.01.2021
English version:
Problems of Information Transmission, 2021, Volume 57, Issue 1, Pages 54–69
DOI: https://doi.org/10.1134/S0032946021010038
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.72
Language: Russian
Citation: V. V. Prelov, “The $f$-divergence and coupling of probability distributions”, Probl. Peredachi Inf., 57:1 (2021), 64–80; Problems Inform. Transmission, 57:1 (2021), 54–69
Citation in format AMSBIB
\Bibitem{Pre21}
\by V.~V.~Prelov
\paper The $f$-divergence and coupling of probability distributions
\jour Probl. Peredachi Inf.
\yr 2021
\vol 57
\issue 1
\pages 64--80
\mathnet{http://mi.mathnet.ru/ppi2335}
\crossref{https://doi.org/10.31857/S0555292321010034}
\transl
\jour Problems Inform. Transmission
\yr 2021
\vol 57
\issue 1
\pages 54--69
\crossref{https://doi.org/10.1134/S0032946021010038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000636430900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103561794}
Linking options:
  • https://www.mathnet.ru/eng/ppi2335
  • https://www.mathnet.ru/eng/ppi/v57/i1/p64
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :12
    References:23
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024