Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2020, Volume 56, Issue 4, Pages 50–63
DOI: https://doi.org/10.31857/S0555292320040051
(Mi ppi2328)
 

This article is cited in 5 scientific papers (total in 5 papers)

Large Systems

On stability of the independence number of a certain distance graph

P. A. Ogaroka, A. M. Raigorodskiibcdeaf

a Moscow Institute of Physics and Technology (State University), Moscow, Russia
b Phystech School of Applied Mathematics and Informatics, Moscow Institute of Physics and Technology (State University), Moscow, Russia
c Institute of Mathematics and Computer Science, Buryat State University, Ulan-Ude, Russia
d Caucasus Mathematical Center, Adyghe State University, Maykop, Republic of Adygea, Russia
e Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
f Laboratory of Advanced Combinatorics and Network Applications, Moscow Institute of Physics and Technology (State University), Moscow, Russia
Full-text PDF (245 kB) Citations (5)
References:
Abstract: We study the asymptotic behavior of the independence number of a random subgraph of a certain $(r,s)$-distance graph. We provide upper and lower bounds for the critical edge survival probability under which a phase transition occurs, i.e., large new independent sets appear in the subgraph, which did not exist in the original graph.
Keywords: random graph, distance graph, independence number.
Funding agency Grant number
Russian Science Foundation 16-11-10014
The research was carried out at the expense of the Russian Science Foundation, project no. 16-11-10014.
Received: 09.03.2020
Revised: 29.10.2020
Accepted: 29.10.2020
English version:
Problems of Information Transmission, 2020, Volume 56, Issue 4, Pages 345–357
DOI: https://doi.org/10.1134/S0032946020040055
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.176
Language: Russian
Citation: P. A. Ogarok, A. M. Raigorodskii, “On stability of the independence number of a certain distance graph”, Probl. Peredachi Inf., 56:4 (2020), 50–63; Problems Inform. Transmission, 56:4 (2020), 345–357
Citation in format AMSBIB
\Bibitem{OgaRai20}
\by P.~A.~Ogarok, A.~M.~Raigorodskii
\paper On stability of the independence number of a certain distance graph
\jour Probl. Peredachi Inf.
\yr 2020
\vol 56
\issue 4
\pages 50--63
\mathnet{http://mi.mathnet.ru/ppi2328}
\crossref{https://doi.org/10.31857/S0555292320040051}
\transl
\jour Problems Inform. Transmission
\yr 2020
\vol 56
\issue 4
\pages 345--357
\crossref{https://doi.org/10.1134/S0032946020040055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000612377800005}
Linking options:
  • https://www.mathnet.ru/eng/ppi2328
  • https://www.mathnet.ru/eng/ppi/v56/i4/p50
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :17
    References:29
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024