Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2020, Volume 56, Issue 4, Pages 10–18
DOI: https://doi.org/10.31857/S0555292320040026
(Mi ppi2325)
 

This article is cited in 2 scientific papers (total in 2 papers)

Coding Theory

On bases of BCH codes with designed distance $3$ and their extensions

I. Yu. Mogilnykhabc, F. I. Solov'evaab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Regional Scientific and Educational Mathematical Center, Tomsk State University, Tomsk, Russia
Full-text PDF (196 kB) Citations (2)
References:
Abstract: We consider narrow-sense BCH codes of length $p^m-1$ over ${{\mathbb{F}}}_{p}$, $m\geqslant3$. We prove that neither such a code with designed distance $\delta=3$ nor its extension for $p\geqslant5$ is generated by the set of its codewords of the minimum nonzero weight. We establish that extended BCH codes with designed distance $\delta=3$ for $p\geqslant3$ are generated by the set of codewords of weight $5$, where basis vectors can be chosen from affine orbits of some codewords.
Keywords: BCH code, cyclic code, affine-invariant code, minimum weight basis, single orbit affine generator.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2020-1479/1
The research was supported in part by the Ministry of Science and Higher Education of the Russian Federation, contract no. 075-02-2020-1479/1.
Received: 10.07.2020
Revised: 26.10.2020
Accepted: 27.10.2020
English version:
Problems of Information Transmission, 2020, Volume 56, Issue 4, Pages 309–316
DOI: https://doi.org/10.1134/S003294602004002X
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.725
Language: Russian
Citation: I. Yu. Mogilnykh, F. I. Solov'eva, “On bases of BCH codes with designed distance $3$ and their extensions”, Probl. Peredachi Inf., 56:4 (2020), 10–18; Problems Inform. Transmission, 56:4 (2020), 309–316
Citation in format AMSBIB
\Bibitem{MogSol20}
\by I.~Yu.~Mogilnykh, F.~I.~Solov'eva
\paper On bases of BCH codes with designed distance $3$ and their extensions
\jour Probl. Peredachi Inf.
\yr 2020
\vol 56
\issue 4
\pages 10--18
\mathnet{http://mi.mathnet.ru/ppi2325}
\crossref{https://doi.org/10.31857/S0555292320040026}
\transl
\jour Problems Inform. Transmission
\yr 2020
\vol 56
\issue 4
\pages 309--316
\crossref{https://doi.org/10.1134/S003294602004002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000612377800002}
Linking options:
  • https://www.mathnet.ru/eng/ppi2325
  • https://www.mathnet.ru/eng/ppi/v56/i4/p10
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024