Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2020, Volume 56, Issue 1, Pages 38–50
DOI: https://doi.org/10.31857/S0555292320010040
(Mi ppi2310)
 

This article is cited in 8 scientific papers (total in 8 papers)

Coding Theory

On $q$-ary codes with two distances $d$ and $d+1$

P. Boyvalenkovab, K. Delchevb, D. V. Zinovievc, V. A. Zinovievc

a Technical Faculty, South-Western University, Blagoevgrad, Bulgaria
b Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
c Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (201 kB) Citations (8)
References:
Abstract: We consider $q$-ary block codes with exactly two distances: $d$ and $d + 1$. Several constructions of such codes are given. In the linear case, we show that all codes can be obtained by a simple modification of linear equidistant codes. Upper bounds for the maximum cardinality of such codes are derived. Tables of lower and upper bounds for small $q$ and $n$ are presented.
Keywords: two-distance codes, equidistant codes, bounds for codes.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00364
Ministry of Education and Science of Bulgaria
The first author was partially supported by the National Scientific Program “Information and Communication Technologies for a Single Digital Market in Science, Education and Security” (ICTinSES) of the Bulgarian Ministry of Education and Science. The second author was supported by the National Program “Young Scientists and PostDocs” of the Bulgarian Ministry of Education and Science. The research of the third and forth authors was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Foundation for Basic Research (project no. 19-01-00364).
Received: 29.05.2019
Revised: 27.10.2019
Accepted: 29.11.2019
English version:
Problems of Information Transmission, 2020, Volume 56, Issue 1, Pages 33–44
DOI: https://doi.org/10.1134/S0032946020010044
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: P. Boyvalenkov, K. Delchev, D. V. Zinoviev, V. A. Zinoviev, “On $q$-ary codes with two distances $d$ and $d+1$”, Probl. Peredachi Inf., 56:1 (2020), 38–50; Problems Inform. Transmission, 56:1 (2020), 33–44
Citation in format AMSBIB
\Bibitem{BoyDelZin20}
\by P.~Boyvalenkov, K.~Delchev, D.~V.~Zinoviev, V.~A.~Zinoviev
\paper On $q$-ary codes with two distances $d$ and $d+1$
\jour Probl. Peredachi Inf.
\yr 2020
\vol 56
\issue 1
\pages 38--50
\mathnet{http://mi.mathnet.ru/ppi2310}
\crossref{https://doi.org/10.31857/S0555292320010040}
\elib{https://elibrary.ru/item.asp?id=43272468}
\transl
\jour Problems Inform. Transmission
\yr 2020
\vol 56
\issue 1
\pages 33--44
\crossref{https://doi.org/10.1134/S0032946020010044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000526343800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083487126}
Linking options:
  • https://www.mathnet.ru/eng/ppi2310
  • https://www.mathnet.ru/eng/ppi/v56/i1/p38
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :26
    References:29
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024