Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2020, Volume 56, Issue 1, Pages 26–37
DOI: https://doi.org/10.31857/S0555292320010039
(Mi ppi2309)
 

This article is cited in 1 scientific paper (total in 1 paper)

Coding Theory

Steiner triple systems of order $21$ with a transversal subdesign $\mathrm{TD}(3, 6)$

Y. Guana, M. Shia, D. S. Krotovb

a Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences, Anhui University, Hefei, Anhui Province, P. R. China
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (267 kB) Citations (1)
References:
Abstract: A Steiner triple system (STS) contains a transversal subdesign $\mathrm{TD}(3, w)$ if its point set has three pairwise disjoint subsets $A$, $B$, $C$ of size $w$ and $w^2$ blocks of the STS intersect with each of $A$, $B$, $C$ (those $w^2$ blocks form a $\mathrm{TD}(3, w)$). We prove several structural properties of Steiner triple systems of order $3w + 3$ that contain one or more transversal subdesigns $\mathrm{TD}(3, w)$. Using exhaustive search, we find that there are $2\ 004\ 720$ isomorphism classes of STS(21) containing a subdesign $\mathrm{TD}(3, 6)$ (or, equivalently, a $6 \times 6$ Latin square).
Keywords: Steiner triple system, subdesign, transversal design, Latin square.
Funding agency Grant number
National Natural Science Foundation of China 61672036
Фонд поддержки выдающихся молодых ученых Фонда естественных наук провинции Аньхой 1808085J20
Академический фонд для выдающихся талантов в университетах gxbjZD03
Siberian Branch of Russian Academy of Sciences I.5.1, номер проекта 0314-2019-0016
The authors are grateful to Svetlana Topalova for useful discussions.
Received: 20.05.2019
Revised: 23.08.2019
Accepted: 29.08.2019
English version:
Problems of Information Transmission, 2020, Volume 56, Issue 1, Pages 23–32
DOI: https://doi.org/10.1134/S0032946020010032
Bibliographic databases:
Document Type: Article
UDC: 621.391.1 : 519.1
Language: Russian
Citation: Y. Guan, M. Shi, D. S. Krotov, “Steiner triple systems of order $21$ with a transversal subdesign $\mathrm{TD}(3, 6)$”, Probl. Peredachi Inf., 56:1 (2020), 26–37; Problems Inform. Transmission, 56:1 (2020), 23–32
Citation in format AMSBIB
\Bibitem{GuaShiKro20}
\by Y.~Guan, M.~Shi, D.~S.~Krotov
\paper Steiner triple systems of order $21$ with a transversal subdesign $\mathrm{TD}(3, 6)$
\jour Probl. Peredachi Inf.
\yr 2020
\vol 56
\issue 1
\pages 26--37
\mathnet{http://mi.mathnet.ru/ppi2309}
\crossref{https://doi.org/10.31857/S0555292320010039}
\elib{https://elibrary.ru/item.asp?id=43284070}
\transl
\jour Problems Inform. Transmission
\yr 2020
\vol 56
\issue 1
\pages 23--32
\crossref{https://doi.org/10.1134/S0032946020010032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000526343800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083506599}
Linking options:
  • https://www.mathnet.ru/eng/ppi2309
  • https://www.mathnet.ru/eng/ppi/v56/i1/p26
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:171
    Full-text PDF :19
    References:20
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024