Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2019, Volume 55, Issue 4, Pages 86–106
DOI: https://doi.org/10.1134/S0555292319040041
(Mi ppi2305)
 

This article is cited in 10 scientific papers (total in 10 papers)

Large Systems

On a Frankl–Wilson Theorem

A. A. Sagdeev

Laboratory of Advanced Combinatorics and Network Applications, Moscow Institute of Physics and Technology (State University), Moscow, Russia
References:
Abstract: We derive an analog of the Frankl–Wilson theorem on independence numbers of some distance graphs. The obtained results are applied to the problem of the chromatic number of a space $\mathbb{R}^n$ with a forbidden equilateral triangle and to the problem of chromatic numbers of distance graphs with large girth.
Keywords: distance graph, Frankl–Wilson theorem, Frankl–Rödl theorem, chromatic number, Euclidean Ramsey theory, girth.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00355_а
Ministry of Education and Science of the Russian Federation НШ-6760.2018.1
Simons Foundation
The research was supported in part by the Russian Foundation for Basic Research, project no. 18-01-00355; the President of the Russian Federation Council for State Support of Leading Scientific Schools, grant no. NSh–6760.2018.1; and the Simons Foundation.
Received: 02.07.2019
Revised: 09.10.2019
Accepted: 12.11.2019
English version:
Problems of Information Transmission, 2019, Volume 55, Issue 4, Pages 376–395
DOI: https://doi.org/10.1134/S0032946019040045
Bibliographic databases:
Document Type: Article
UDC: 629.391.1 : 519.1
Language: Russian
Citation: A. A. Sagdeev, “On a Frankl–Wilson Theorem”, Probl. Peredachi Inf., 55:4 (2019), 86–106; Problems Inform. Transmission, 55:4 (2019), 376–395
Citation in format AMSBIB
\Bibitem{Sag19}
\by A.~A.~Sagdeev
\paper On a Frankl--Wilson Theorem
\jour Probl. Peredachi Inf.
\yr 2019
\vol 55
\issue 4
\pages 86--106
\mathnet{http://mi.mathnet.ru/ppi2305}
\crossref{https://doi.org/10.1134/S0555292319040041}
\elib{https://elibrary.ru/item.asp?id=39180352}
\transl
\jour Problems Inform. Transmission
\yr 2019
\vol 55
\issue 4
\pages 376--395
\crossref{https://doi.org/10.1134/S0032946019040045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520150600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078214323}
Linking options:
  • https://www.mathnet.ru/eng/ppi2305
  • https://www.mathnet.ru/eng/ppi/v55/i4/p86
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :42
    References:37
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024