Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2019, Volume 55, Issue 4, Pages 3–51
DOI: https://doi.org/10.1134/S0555292319040016
(Mi ppi2302)
 

This article is cited in 18 scientific papers (total in 18 papers)

Information Theory

The Augustin capacity and center

B. Nakiboğlu

Middle East Technical University, Ankara, Turkey
References:
Abstract: For any channel, the existence of a unique Augustin mean is established for any positive order and probability mass function on the input set. The Augustin mean is shown to be the unique fixed point of an operator defined in terms of the order and the input distribution. The Augustin information is shown to be continuously differentiable in the order. For any channel and convex constraint set with finite Augustin capacity, the existence of a unique Augustin center and the associated van Erven–Harremoes bound are established. The Augustin–Legendre (A-L) information, capacity, center, and radius are introduced, and the latter three are proved to be equal to the corresponding Rényi–Gallager quantities. The equality of the A-L capacity to the A-L radius for arbitrary channels and the existence of a unique A-L center for channels with finite A-L capacity are established. For all interior points of the feasible set of cost constraints, the cost constrained Augustin capacity and center are expressed in terms of the A-L capacity and center. Certain shift-invariant families of probabilities and certain Gaussian channels are analyzed as examples.
Keywords: Rényi divergence, Rényi information, Augustin information, Augustin mean, Augustin center, Augustin capacity, cost constrained capacity and center, Augustin–Legendre information measures, Rényi–Gallager information measures.
Received: 22.03.2018
Revised: 20.08.2019
Accepted: 12.11.2019
English version:
Problems of Information Transmission, 2019, Volume 55, Issue 4, Pages 299–342
DOI: https://doi.org/10.1134/S003294601904001X
Bibliographic databases:
Document Type: Article
UDC: 621.391.1 : 519.72
Language: Russian
Citation: B. Nakiboğlu, “The Augustin capacity and center”, Probl. Peredachi Inf., 55:4 (2019), 3–51; Problems Inform. Transmission, 55:4 (2019), 299–342
Citation in format AMSBIB
\Bibitem{Nak19}
\by B.~Nakibo{\u g}lu
\paper The Augustin capacity and center
\jour Probl. Peredachi Inf.
\yr 2019
\vol 55
\issue 4
\pages 3--51
\mathnet{http://mi.mathnet.ru/ppi2302}
\crossref{https://doi.org/10.1134/S0555292319040016}
\elib{https://elibrary.ru/item.asp?id=43645357}
\transl
\jour Problems Inform. Transmission
\yr 2019
\vol 55
\issue 4
\pages 299--342
\crossref{https://doi.org/10.1134/S003294601904001X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520150600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078131452}
Linking options:
  • https://www.mathnet.ru/eng/ppi2302
  • https://www.mathnet.ru/eng/ppi/v55/i4/p3
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:307
    Full-text PDF :39
    References:40
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024