Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2019, Volume 55, Issue 2, Pages 82–111
DOI: https://doi.org/10.1134/S0555292319020050
(Mi ppi2291)
 

Communication Network Theory

The geometry of big queues

A. A. Puhalskii

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We use Hamilton equations to identify most likely scenarios of long queues being formed in ergodic Jackson networks. Since the associated Hamiltonians are discontinuous and piecewise Lipschitz, one has to invoke methods of nonsmooth analysis. Time reversal of the Hamilton equations yields fluid equations for the dual network. Accordingly, the optimal trajectories are time reversals of the fluid trajectories of the dual network. Those trajectories are shown to belong to domains that satisfy a certain condition of being “essential”. As an illustration, we consider a two-station Jackson network. In addition, we prove certain properties of substochastic matrices, which may be of interest in their own right.
Keywords: queueing theory, Jackson networks, large deviations, large deviation principle, optimal trajectories, Hamilton equations, dual Markov processes, fluid dynamics.
Received: 29.08.2018
Revised: 14.01.2019
Accepted: 15.01.2019
English version:
Problems of Information Transmission, 2019, Volume 55, Issue 2, Pages 174–200
DOI: https://doi.org/10.1134/S0032946019020054
Bibliographic databases:
Document Type: Article
UDC: 621.391:621.394/395.74
Language: Russian
Citation: A. A. Puhalskii, “The geometry of big queues”, Probl. Peredachi Inf., 55:2 (2019), 82–111; Problems Inform. Transmission, 55:2 (2019), 174–200
Citation in format AMSBIB
\Bibitem{Puk19}
\by A.~A.~Puhalskii
\paper The geometry of big queues
\jour Probl. Peredachi Inf.
\yr 2019
\vol 55
\issue 2
\pages 82--111
\mathnet{http://mi.mathnet.ru/ppi2291}
\crossref{https://doi.org/10.1134/S0555292319020050}
\elib{https://elibrary.ru/item.asp?id=37652420}
\transl
\jour Problems Inform. Transmission
\yr 2019
\vol 55
\issue 2
\pages 174--200
\crossref{https://doi.org/10.1134/S0032946019020054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000475572700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068877180}
Linking options:
  • https://www.mathnet.ru/eng/ppi2291
  • https://www.mathnet.ru/eng/ppi/v55/i2/p82
    Erratum
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :50
    References:44
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024