Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2019, Volume 55, Issue 2, Pages 50–57
DOI: https://doi.org/10.1134/S0555292319020037
(Mi ppi2289)
 

This article is cited in 1 scientific paper (total in 1 paper)

Coding Theory

On application of the modulus metric to solving the minimum Euclidean distance decoding problem

V. А. Davydov

Tikhonov Moscow Institute of Electronics and Mathematics, National Research University—Higher School of Economics, Moscow, Russia
Full-text PDF (188 kB) Citations (1)
References:
Abstract: We prove equivalence of using the modulus metric and Euclidean metric in solving the soft decoding problem for a memoryless discrete channel with binary input and $Q$-ary output. For such a channel, we give an example of a construction of binary codes correcting $t$ binary errors in the Hamming metric. The constructed codes correct errors at the output of a demodulator with $Q$ quantization errors as $(t+1)(Q-1)-1$ errors in the modulus metric. The obtained codes are shown to have polynomial decoding complexity.
Keywords: modulus metric, Euclidean metric, soft decoding, binary-input $Q$-ary output channel, codes in the modulus metric.
Received: 09.05.2018
Revised: 23.03.2019
Accepted: 16.04.2019
English version:
Problems of Information Transmission, 2019, Volume 55, Issue 2, Pages 145–151
DOI: https://doi.org/10.1134/S0032946019020030
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: V. А. Davydov, “On application of the modulus metric to solving the minimum Euclidean distance decoding problem”, Probl. Peredachi Inf., 55:2 (2019), 50–57; Problems Inform. Transmission, 55:2 (2019), 145–151
Citation in format AMSBIB
\Bibitem{Dav19}
\by V.~А.~Davydov
\paper On application of the modulus metric to solving the minimum Euclidean distance decoding problem
\jour Probl. Peredachi Inf.
\yr 2019
\vol 55
\issue 2
\pages 50--57
\mathnet{http://mi.mathnet.ru/ppi2289}
\crossref{https://doi.org/10.1134/S0555292319020037}
\elib{https://elibrary.ru/item.asp?id=37297534}
\transl
\jour Problems Inform. Transmission
\yr 2019
\vol 55
\issue 2
\pages 145--151
\crossref{https://doi.org/10.1134/S0032946019020030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000475572700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068837441}
Linking options:
  • https://www.mathnet.ru/eng/ppi2289
  • https://www.mathnet.ru/eng/ppi/v55/i2/p50
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :27
    References:38
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024