Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2019, Volume 55, Issue 2, Pages 28–49
DOI: https://doi.org/10.1134/S0555292319020025
(Mi ppi2288)
 

This article is cited in 3 scientific papers (total in 3 papers)

Coding Theory

Non-split toric codes

D. I. Koshelevabc

a Department of Discrete Mathematics, Moscow Institute of Physics and Technology (State University), Moscow, Russia
b Versailles Laboratory of Mathematics, Versailles Saint-Quentin-en-Yvelines University, Versailles, France
c Algebra and Number Theory Laboratory, Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (342 kB) Citations (3)
References:
Abstract: We introduce a new wide class of error-correcting codes, called non-split toric codes. These codes are a natural generalization of toric codes where non-split algebraic tori are taken instead of usual (i.e., split) ones. The main advantage of the new codes is their cyclicity; hence, they can possibly be decoded quite fast. Many classical codes, such as (doubly-extended) Reed–Solomon and (projective) Reed–Muller codes, are contained (up to equivalence) in the new class. Our codes are explicitly described in terms of algebraic and toric geometries over finite fields; therefore, they can easily be constructed in practice. Finally, we obtain new cyclic reversible codes, namely non-split toric codes on the del Pezzo surface of degree $6$ and Picard number $1$. We also compute their parameters, which prove to attain current lower bounds at least for small finite fields.
Keywords: finite fields, toric and cyclic codes, non-split algebraic tori, toric varieties, del Pezzo surfaces, elliptic curves.
Funding agency Grant number
Simons Foundation
The research was supported in part by the Simons Foundation.
Received: 22.11.2018
Revised: 09.01.2019
Accepted: 15.01.2019
English version:
Problems of Information Transmission, 2019, Volume 55, Issue 2, Pages 124–144
DOI: https://doi.org/10.1134/S0032946019020029
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: D. I. Koshelev, “Non-split toric codes”, Probl. Peredachi Inf., 55:2 (2019), 28–49; Problems Inform. Transmission, 55:2 (2019), 124–144
Citation in format AMSBIB
\Bibitem{Kos19}
\by D.~I.~Koshelev
\paper Non-split toric codes
\jour Probl. Peredachi Inf.
\yr 2019
\vol 55
\issue 2
\pages 28--49
\mathnet{http://mi.mathnet.ru/ppi2288}
\crossref{https://doi.org/10.1134/S0555292319020025}
\elib{https://elibrary.ru/item.asp?id=37297533}
\transl
\jour Problems Inform. Transmission
\yr 2019
\vol 55
\issue 2
\pages 124--144
\crossref{https://doi.org/10.1134/S0032946019020029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000475572700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068816512}
Linking options:
  • https://www.mathnet.ru/eng/ppi2288
  • https://www.mathnet.ru/eng/ppi/v55/i2/p28
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :46
    References:34
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024