Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2018, Volume 54, Issue 3, Pages 102–111 (Mi ppi2277)  

This article is cited in 2 scientific papers (total in 2 papers)

Communication Network Theory

Propagation of chaos and Poisson hypothesis

A. A. Vladimirova, S. A. Pirogova, A. N. Rybkoa, S. B. Shlosmanabc

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
b Skolkovo Institute of Science and Technology, Moscow, Russia
c Aix Marseille Université, Université de Toulon, CNRS, CPT, Marseille, France
Full-text PDF (219 kB) Citations (2)
References:
Abstract: We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.
Funding agency Grant number
Russian Science Foundation 14-50-00150
17-11-010980
Agence Nationale de la Recherche ANR-11-LABX-0033
ANR-11-IDEX-0001-02
The research of A. Rybko and A. Vladimirov (the results of Sections 3–5) was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Science Foundation, project no. 14-50-00150.
The research of S. Pirogov, presented in Section 6, was carried out at the expense of the Russian Science Foundation, project no. 17-11-01098.
The work of S. Shlosman, presented in Sections 1–2, was performed in the framework of the Labex Archimede (ANR-11-LABX-0033) and the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government programme managed by the French National Research Agency (ANR); it was also supported by the Grant PRC no. 1556 CNRS-RFBR 2017–2019 “Multidimensional semi-classical problems of condensed matter physics and quantum mechanics.”
Received: 21.10.2016
Revised: 25.04.2018
English version:
Problems of Information Transmission, 2018, Volume 54, Issue 3, Pages 290–299
DOI: https://doi.org/10.1134/S0032946018030080
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.2
Language: Russian
Citation: A. A. Vladimirov, S. A. Pirogov, A. N. Rybko, S. B. Shlosman, “Propagation of chaos and Poisson hypothesis”, Probl. Peredachi Inf., 54:3 (2018), 102–111; Problems Inform. Transmission, 54:3 (2018), 290–299
Citation in format AMSBIB
\Bibitem{VlaPirRyb18}
\by A.~A.~Vladimirov, S.~A.~Pirogov, A.~N.~Rybko, S.~B.~Shlosman
\paper Propagation of chaos and Poisson hypothesis
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 3
\pages 102--111
\mathnet{http://mi.mathnet.ru/ppi2277}
\elib{https://elibrary.ru/item.asp?id=38642571}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 3
\pages 290--299
\crossref{https://doi.org/10.1134/S0032946018030080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448436900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054880839}
Linking options:
  • https://www.mathnet.ru/eng/ppi2277
  • https://www.mathnet.ru/eng/ppi/v54/i3/p102
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ïðîáëåìû ïåðåäà÷è èíôîðìàöèè Problems of Information Transmission
    Statistics & downloads:
    Abstract page:273
    Full-text PDF :36
    References:37
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024