|
Problemy Peredachi Informatsii, 2018, Volume 54, Issue 3, Pages 102–111
(Mi ppi2277)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Communication Network Theory
Propagation of chaos and Poisson hypothesis
A. A. Vladimirova, S. A. Pirogova, A. N. Rybkoa, S. B. Shlosmanabc a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
b Skolkovo Institute of Science and Technology, Moscow, Russia
c Aix Marseille Université, Université de Toulon, CNRS, CPT, Marseille, France
Abstract:
We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.
Received: 21.10.2016 Revised: 25.04.2018
Citation:
A. A. Vladimirov, S. A. Pirogov, A. N. Rybko, S. B. Shlosman, “Propagation of chaos and Poisson hypothesis”, Probl. Peredachi Inf., 54:3 (2018), 102–111; Problems Inform. Transmission, 54:3 (2018), 290–299
Linking options:
https://www.mathnet.ru/eng/ppi2277 https://www.mathnet.ru/eng/ppi/v54/i3/p102
|
Statistics & downloads: |
Abstract page: | 273 | Full-text PDF : | 36 | References: | 37 | First page: | 11 |
|