Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2018, Volume 54, Issue 3, Pages 92–101 (Mi ppi2276)  

This article is cited in 3 scientific papers (total in 3 papers)

Large Systems

Infinite spectra of first-order properties for random hypergraphs

S. N. Popova

Moscow Institute of Physics and Technology (State University), Moscow, Russia
Full-text PDF (213 kB) Citations (3)
References:
Abstract: We study the asymptotic behavior of probabilities of first-order properties for random uniform hypergraphs. In 1990, J. Spencer introduced the notion of a spectrum for graph properties and proved the existence of a first-order property with an infinite spectrum. In this paper we give a definition of a spectrum for properties of uniform hypergraphs and establish an almost tight bound for the minimum quantifier depth of a first-order formula with infinite spectrum.
Funding agency Grant number
Russian Science Foundation 16-11-10014
The research was carried out at the expense of the Russian Science Foundation, project no. 16-11-10014.
Received: 07.10.2017
Revised: 29.04.2018
English version:
Problems of Information Transmission, 2018, Volume 54, Issue 3, Pages 281–289
DOI: https://doi.org/10.1134/S0032946018030079
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.1
Language: Russian
Citation: S. N. Popova, “Infinite spectra of first-order properties for random hypergraphs”, Probl. Peredachi Inf., 54:3 (2018), 92–101; Problems Inform. Transmission, 54:3 (2018), 281–289
Citation in format AMSBIB
\Bibitem{Pop18}
\by S.~N.~Popova
\paper Infinite spectra of first-order properties for random hypergraphs
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 3
\pages 92--101
\mathnet{http://mi.mathnet.ru/ppi2276}
\elib{https://elibrary.ru/item.asp?id=38633854}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 3
\pages 281--289
\crossref{https://doi.org/10.1134/S0032946018030079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448436900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054824014}
Linking options:
  • https://www.mathnet.ru/eng/ppi2276
  • https://www.mathnet.ru/eng/ppi/v54/i3/p92
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :27
    References:34
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024