Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2018, Volume 54, Issue 3, Pages 67–72 (Mi ppi2274)  

This article is cited in 3 scientific papers (total in 3 papers)

Automata Theory

On the complexity of polynomial recurrence sequences

S. S. Marchenkov

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (130 kB) Citations (3)
References:
Abstract: We consider recurrence sequences over the set of integers with generating functions being arbitrary superpositions of polynomial functions and the sg function, called polynomial recurrence sequences. We define polynomial-register (PR) machines, close to random-access machines. We prove that computations on PR machines can be modeled by polynomial recurrence sequences. On the other hand, computation of elements of a polynomial recurrence sequence can be implemented using a suitable PR machine.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00593_а
Supported in part by the Russian Foundation for Basic Research, project no. 16-01-00593.
Received: 09.01.2018
English version:
Problems of Information Transmission, 2018, Volume 54, Issue 3, Pages 258–262
DOI: https://doi.org/10.1134/S0032946018030055
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.7
Language: Russian
Citation: S. S. Marchenkov, “On the complexity of polynomial recurrence sequences”, Probl. Peredachi Inf., 54:3 (2018), 67–72; Problems Inform. Transmission, 54:3 (2018), 258–262
Citation in format AMSBIB
\Bibitem{Mar18}
\by S.~S.~Marchenkov
\paper On the complexity of polynomial recurrence sequences
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 3
\pages 67--72
\mathnet{http://mi.mathnet.ru/ppi2274}
\elib{https://elibrary.ru/item.asp?id=38642927}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 3
\pages 258--262
\crossref{https://doi.org/10.1134/S0032946018030055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448436900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054906636}
Linking options:
  • https://www.mathnet.ru/eng/ppi2274
  • https://www.mathnet.ru/eng/ppi/v54/i3/p67
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :47
    References:26
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024