Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2018, Volume 54, Issue 2, Pages 86–102 (Mi ppi2268)  

This article is cited in 4 scientific papers (total in 4 papers)

Communication Network Theory

Maximum remaining service time in infinite-server queues

A. V. Lebedev

Department of Probability Theory, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (400 kB) Citations (4)
References:
Abstract: We study the maximum remaining service time in infinite-server queues of type $M|G|\infty$ (at a given time and in a stationary regime). The following cases for the arrival flow rate are considered: (1) time-independent, (2) given by a function of time, (3) given by a random process. As examples of service time distributions, we consider exponential, hyperexponential, Pareto, and uniform distributions. In the case of a constant rate, we study effects that arise when the average service time is infinite (for power-law distribution tails). We find the extremal index of the sequence of maximum remaining service times. The results are extended to queues of type $M^X|G|\infty$, including those with dependent service times within a batch.
Received: 13.04.2017
Revised: 21.07.2017
English version:
Problems of Information Transmission, 2018, Volume 54, Issue 2, Pages 176–190
DOI: https://doi.org/10.1134/S0032946018020060
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.21
Language: Russian
Citation: A. V. Lebedev, “Maximum remaining service time in infinite-server queues”, Probl. Peredachi Inf., 54:2 (2018), 86–102; Problems Inform. Transmission, 54:2 (2018), 176–190
Citation in format AMSBIB
\Bibitem{Leb18}
\by A.~V.~Lebedev
\paper Maximum remaining service time in infinite-server queues
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 2
\pages 86--102
\mathnet{http://mi.mathnet.ru/ppi2268}
\elib{https://elibrary.ru/item.asp?id=35746981}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 2
\pages 176--190
\crossref{https://doi.org/10.1134/S0032946018020060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438828500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050025169}
Linking options:
  • https://www.mathnet.ru/eng/ppi2268
  • https://www.mathnet.ru/eng/ppi/v54/i2/p86
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :64
    References:45
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024