Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2018, Volume 54, Issue 2, Pages 3–19 (Mi ppi2263)  

Coding Theory

On the smallest size of an almost complete subset of a conic in $\mathrm{PG}(2,q)$ and extendability of Reed–Solomon codes

D. Bartolia, A. A. Davydovb, S. Marcuginia, F. Pambiancoa

a aDepartment of Mathematics and Computer Sciences, Università degli Studi di Perugia, Perugia, Italy
b Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: In the projective plane $\mathrm{PG}(2,q)$, a subset $\mathcal S$ of a conic $\mathcal C$ is said to be almost complete if it can be extended to a larger arc in $\mathrm{PG}(2,q)$ only by the points of $\mathcal C\setminus\mathcal S$ and by the nucleus of $\mathcal C$ when $q$ is even. We obtain new upper bounds on the smallest size $t(q)$ of an almost complete subset of a conic, in particular,
$$ \begin{aligned} & t(q)<\sqrt{q(3\ln q+\ln\ln q+\ln3)}+\sqrt{\frac q{3\ln q}}+4\sim\sqrt{3q\ln q},\\ & t(q)<1{,}835\sqrt{q\ln q}. \end{aligned} $$
The new bounds are used to extend the set of pairs $(N,q)$ for which it is proved that every normal rational curve in the projective space $\mathrm{PG}(N,q)$ is a complete $(q+1)$-arc, or equivalently, that no $[q+1,N+1,q-N+1]_q$ generalized doubly-extended Reed–Solomon code can be extended to a $[q+2,N+1,q-N+2]_q$ maximum distance separable code.
Funding agency Grant number
Italian Ministry of Education, University and Research
Italian National Group for Algebraic and Geometric Structures and Their Applications (GNSAGA–INDAM)
University of Perugia
Russian Science Foundation 14-50-00150
Supported in part by the Ministry of Education, Universities and Research of Italy (MIUR), project “Geometrie di Galois e strutture di incidenza”, Italian National Group for Algebraic and Geometric Structures and Their Applications (GNSAGA–INDAM), and University of Perugia, projects “Configurazioni geometriche e superfici altamente simmetriche” and “Codici lineari e strutture geometriche correlate”, Base Research Fund 2015.
The research was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Science Foundation, project no. 14-50-00150.
Received: 06.09.2016
Revised: 25.12.2017
English version:
Problems of Information Transmission, 2018, Volume 54, Issue 2, Pages 101–115
DOI: https://doi.org/10.1134/S0032946018020011
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: D. Bartoli, A. A. Davydov, S. Marcugini, F. Pambianco, “On the smallest size of an almost complete subset of a conic in $\mathrm{PG}(2,q)$ and extendability of Reed–Solomon codes”, Probl. Peredachi Inf., 54:2 (2018), 3–19; Problems Inform. Transmission, 54:2 (2018), 101–115
Citation in format AMSBIB
\Bibitem{BarDavMar18}
\by D.~Bartoli, A.~A.~Davydov, S.~Marcugini, F.~Pambianco
\paper On the smallest size of an almost complete subset of a~conic in $\mathrm{PG}(2,q)$ and extendability of Reed--Solomon codes
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 2
\pages 3--19
\mathnet{http://mi.mathnet.ru/ppi2263}
\elib{https://elibrary.ru/item.asp?id=35768857}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 2
\pages 101--115
\crossref{https://doi.org/10.1134/S0032946018020011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438828500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049970327}
Linking options:
  • https://www.mathnet.ru/eng/ppi2263
  • https://www.mathnet.ru/eng/ppi/v54/i2/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ïðîáëåìû ïåðåäà÷è èíôîðìàöèè Problems of Information Transmission
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :31
    References:44
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024