|
Problemy Peredachi Informatsii, 2018, Volume 54, Issue 2, Pages 3–19
(Mi ppi2263)
|
|
|
|
Coding Theory
On the smallest size of an almost complete subset of a conic in $\mathrm{PG}(2,q)$ and extendability of Reed–Solomon codes
D. Bartolia, A. A. Davydovb, S. Marcuginia, F. Pambiancoa a aDepartment of Mathematics and Computer Sciences, Università degli Studi di Perugia, Perugia, Italy
b Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
Abstract:
In the projective plane $\mathrm{PG}(2,q)$, a subset $\mathcal S$ of a conic $\mathcal C$ is said to be almost complete if it can be extended to a larger arc in $\mathrm{PG}(2,q)$ only by the points of $\mathcal C\setminus\mathcal S$ and by the nucleus of $\mathcal C$ when $q$ is even. We obtain new upper bounds on the smallest size $t(q)$ of an almost complete subset of a conic, in particular,
$$
\begin{aligned}
& t(q)<\sqrt{q(3\ln q+\ln\ln q+\ln3)}+\sqrt{\frac q{3\ln q}}+4\sim\sqrt{3q\ln q},\\
& t(q)<1{,}835\sqrt{q\ln q}.
\end{aligned}
$$
The new bounds are used to extend the set of pairs $(N,q)$ for which it is proved that every normal rational curve in the projective space $\mathrm{PG}(N,q)$ is a complete $(q+1)$-arc, or equivalently, that no $[q+1,N+1,q-N+1]_q$ generalized doubly-extended Reed–Solomon code can be extended to a $[q+2,N+1,q-N+2]_q$ maximum distance separable code.
Received: 06.09.2016 Revised: 25.12.2017
Citation:
D. Bartoli, A. A. Davydov, S. Marcugini, F. Pambianco, “On the smallest size of an almost complete subset of a conic in $\mathrm{PG}(2,q)$ and extendability of Reed–Solomon codes”, Probl. Peredachi Inf., 54:2 (2018), 3–19; Problems Inform. Transmission, 54:2 (2018), 101–115
Linking options:
https://www.mathnet.ru/eng/ppi2263 https://www.mathnet.ru/eng/ppi/v54/i2/p3
|
Statistics & downloads: |
Abstract page: | 240 | Full-text PDF : | 31 | References: | 44 | First page: | 8 |
|