Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2018, Volume 54, Issue 1, Pages 63–77 (Mi ppi2260)  

This article is cited in 3 scientific papers (total in 3 papers)

Large Systems

General independence sets in random strongly sparse hypergraphs

A. S. Semenovab, D. A. Shabanovac

a Department of Probability Theory, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Chair of Discrete Mathematics, Department of Innovation and High Technology, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
c Laboratory of Advanced Combinatorics and Network Applications, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
Full-text PDF (242 kB) Citations (3)
References:
Abstract: We analyze the asymptotic behavior of the $j$-independence number of a random $k$-uniform hypergraph $H(n,k,p)$ in the binomial model. We prove that in the strongly sparse case, i.e., where $p=c\big/\binom{n-1}{k-1}$ for a positive constant $0<c\le1/(k-1)$, there exists a constant $\gamma(k,j,c)>0$ such that the $j$-independence number $\alpha_j(H(n,k,p))$ obeys the law of large numbers
$$ \frac{\alpha_j(H(n,k,p))}{n}\xrightarrow{\mathbf P\,}\gamma(k,j,c)\qquad\text{as}\quad n\to+\infty. $$

Moreover, we explicitly present $\gamma(k,j,c)$ as a function of a solution of some transcendental equation.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03530-a
Ministry of Education and Science of the Russian Federation MД-5650.2016.1
Supported in part by the Russian Foundation for Basic Research, project no. 15-01-03530-a, and President of the Russian Federation Grant no. MD-5650.2016.1.
Received: 01.08.2016
Revised: 13.04.2017
English version:
Problems of Information Transmission, 2018, Volume 54, Issue 1, Pages 56–69
DOI: https://doi.org/10.1134/S0032946018010052
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.1
Language: Russian
Citation: A. S. Semenov, D. A. Shabanov, “General independence sets in random strongly sparse hypergraphs”, Probl. Peredachi Inf., 54:1 (2018), 63–77; Problems Inform. Transmission, 54:1 (2018), 56–69
Citation in format AMSBIB
\Bibitem{SemSha18}
\by A.~S.~Semenov, D.~A.~Shabanov
\paper General independence sets in random strongly sparse hypergraphs
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 1
\pages 63--77
\mathnet{http://mi.mathnet.ru/ppi2260}
\elib{https://elibrary.ru/item.asp?id=32614064}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 1
\pages 56--69
\crossref{https://doi.org/10.1134/S0032946018010052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429943100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045512697}
Linking options:
  • https://www.mathnet.ru/eng/ppi2260
  • https://www.mathnet.ru/eng/ppi/v54/i1/p63
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:320
    Full-text PDF :41
    References:35
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024