Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2018, Volume 54, Issue 1, Pages 39–53 (Mi ppi2258)  

Coding Theory

Mollard code as a robust nonlinear code

D. I. Kovalevskaya

St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia
References:
Abstract: We consider the Mollard construction from the point of view of its efficiency for detecting multiple bit errors. We propose a generalization of the classical extended Mollard code to arbitrary code lengths. We show partial robustness of this construction: such codes have less undetected and miscorrected errors than linear codes. We prove that, for certain code parameters, the generalization of the Mollard construction can ensure better error protection than a generalization of Vasil'ev codes.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 2.2716.2014/K
2.9214.2017/БЧ
The research was supported by the Ministry of Education and Science of the Russian Federation under the Project Part of the State Assignment in the Sphere of Scientific Activities, assignment no. 2.2716.2014/K of June 17, 2014, and under the Base Part of the State Assignment in the Sphere of Scientific Activities for 2017–2019, assignment no. 2.9214.2017/BCh.
Received: 20.02.2016
Revised: 06.10.2017
English version:
Problems of Information Transmission, 2018, Volume 54, Issue 1, Pages 34–47
DOI: https://doi.org/10.1134/S0032946018010039
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: D. I. Kovalevskaya, “Mollard code as a robust nonlinear code”, Probl. Peredachi Inf., 54:1 (2018), 39–53; Problems Inform. Transmission, 54:1 (2018), 34–47
Citation in format AMSBIB
\Bibitem{Kov18}
\by D.~I.~Kovalevskaya
\paper Mollard code as a~robust nonlinear code
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 1
\pages 39--53
\mathnet{http://mi.mathnet.ru/ppi2258}
\elib{https://elibrary.ru/item.asp?id=32614062}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 1
\pages 34--47
\crossref{https://doi.org/10.1134/S0032946018010039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429943100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045529712}
Linking options:
  • https://www.mathnet.ru/eng/ppi2258
  • https://www.mathnet.ru/eng/ppi/v54/i1/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :51
    References:40
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024