Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2017, Volume 53, Issue 4, Pages 3–15 (Mi ppi2249)  

This article is cited in 9 scientific papers (total in 9 papers)

Coding Theory

Independence numbers of random subgraphs of some distance graph

N. M. Derevyanko, S. G. Kiselev

Moscow Institute of Physics and Technology (State University), Moscow, Russia
Full-text PDF (206 kB) Citations (9)
References:
Abstract: The distance graph $G(n,2,1)$ is a graph where vertices are identified with twoelement subsets of $\{1,2,\dots,n\}$, and two vertices are connected by an edge whenever the corresponding subsets have exactly one common element. A random subgraph $G_p(n,2,1)$ in the Erdős–Rényi model is obtained by selecting each edge of $G(n,2,1)$ with probability p independently of other edges. We find a lower bound on the independence number of the random subgraph $G_{1/2}(n,2,1)$.
Received: 25.02.2017
Revised: 04.05.2017
English version:
Problems of Information Transmission, 2017, Volume 53, Issue 4, Pages 307–318
DOI: https://doi.org/10.1134/S0032946017040019
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.1
Language: Russian
Citation: N. M. Derevyanko, S. G. Kiselev, “Independence numbers of random subgraphs of some distance graph”, Probl. Peredachi Inf., 53:4 (2017), 3–15; Problems Inform. Transmission, 53:4 (2017), 307–318
Citation in format AMSBIB
\Bibitem{DerKis17}
\by N.~M.~Derevyanko, S.~G.~Kiselev
\paper Independence numbers of random subgraphs of some distance graph
\jour Probl. Peredachi Inf.
\yr 2017
\vol 53
\issue 4
\pages 3--15
\mathnet{http://mi.mathnet.ru/ppi2249}
\elib{https://elibrary.ru/item.asp?id=30729588}
\transl
\jour Problems Inform. Transmission
\yr 2017
\vol 53
\issue 4
\pages 307--318
\crossref{https://doi.org/10.1134/S0032946017040019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000424343800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85041543842}
Linking options:
  • https://www.mathnet.ru/eng/ppi2249
  • https://www.mathnet.ru/eng/ppi/v53/i4/p3
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :51
    References:35
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024