Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2017, Volume 53, Issue 2, Pages 40–59 (Mi ppi2234)  

This article is cited in 3 scientific papers (total in 3 papers)

Coding Theory

MDS codes in Doob graphs

E. A. Bespalov, D. S. Krotov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (298 kB) Citations (3)
References:
Abstract: The Doob graph $D(m,n)$, where $m>0$, is a Cartesian product of $m$ copies of the Shrikhande graph and $n$ copies of the complete graph $K_4$ on four vertices. The Doob graph $D(m,n)$ is a distance-regular graph with the same parameters as the Hamming graph $H(2m+n,4)$. We give a characterization of MDS codes in Doob graphs $D(m,n)$ with code distance at least $3$. Up to equivalence, there are $m^3/36+7m^2/24+11m/12+1-(m\bmod2)/8-(m\bmod3)/9$ MDS codes with code distance $2m+n$ in $D(m,n)$, two codes with distance $3$ in each of $D(2,0)$ and $D(2,1)$ and with distance $4$ in $D(2,1)$, and one code with distance $3$ in each of $D(1,2)$ and $D(1,3)$ and with distance $4$ in each of $D(1,3)$ and $D(2,2)$.
Funding agency Grant number
Russian Science Foundation 14-11-00555
The research was carried out at the expense of the Russian Science Foundation, project no. 14-11-00555.
Received: 06.02.2016
Revised: 04.12.2016
English version:
Problems of Information Transmission, 2017, Volume 53, Issue 2, Pages 136–154
DOI: https://doi.org/10.1134/S003294601702003X
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: E. A. Bespalov, D. S. Krotov, “MDS codes in Doob graphs”, Probl. Peredachi Inf., 53:2 (2017), 40–59; Problems Inform. Transmission, 53:2 (2017), 136–154
Citation in format AMSBIB
\Bibitem{BesKro17}
\by E.~A.~Bespalov, D.~S.~Krotov
\paper MDS codes in Doob graphs
\jour Probl. Peredachi Inf.
\yr 2017
\vol 53
\issue 2
\pages 40--59
\mathnet{http://mi.mathnet.ru/ppi2234}
\elib{https://elibrary.ru/item.asp?id=29202067}
\transl
\jour Problems Inform. Transmission
\yr 2017
\vol 53
\issue 2
\pages 136--154
\crossref{https://doi.org/10.1134/S003294601702003X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000405581700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85023769057}
Linking options:
  • https://www.mathnet.ru/eng/ppi2234
  • https://www.mathnet.ru/eng/ppi/v53/i2/p40
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :32
    References:45
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024