Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2016, Volume 52, Issue 4, Pages 14–30 (Mi ppi2219)  

This article is cited in 7 scientific papers (total in 7 papers)

Information Theory

List decoding for a multiple access hyperchannel

V. Yu. Shchukinab

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
b Probability Theory Chair, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (259 kB) Citations (7)
References:
Abstract: We obtain bounds on the rate of (optimal) list-decoding codes with a fixed list size $L\ge1$ for a $q$-ary multiple access hyperchannel (MAHC) with $s\ge2$ inputs and one output. By definition, an output signal of this channel is the set of symbols of a $q$-ary alphabet that occur in at least one of the $s$ input signals. For example, in the case of a binary MAHC, where $q=2$, an output signal takes values in the ternary alphabet $\{0,1,\{0,1\}\}$; namely, it equals $0$ ($1$) if all the $s$ input signals are $0$ ($1$) and equals $\{0,1\}$ otherwise. Previously, upper and lower bounds on the code rate for a $q$-ary MAHC were studied for $L\ge1$ and $q=2$, and also for the nonbinary case $q\ge3$ for $L=1$ only, i.e., for so-called frameproof codes. Constructing upper and lower bounds on the rate for the general case of $L\ge1$ and $q\ge2$ in the present paper is based on a substantial development of methods that we designed earlier for the classical binary disjunctive multiple access channel.
Funding agency Grant number
Russian Science Foundation 14-50-00150
The research was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Science Foundation, project no. 14-50-00150.
Received: 15.10.2015
Revised: 09.08.2016
English version:
Problems of Information Transmission, 2016, Volume 52, Issue 4, Pages 329–343
DOI: https://doi.org/10.1134/S0032946016040025
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: V. Yu. Shchukin, “List decoding for a multiple access hyperchannel”, Probl. Peredachi Inf., 52:4 (2016), 14–30; Problems Inform. Transmission, 52:4 (2016), 329–343
Citation in format AMSBIB
\Bibitem{Shc16}
\by V.~Yu.~Shchukin
\paper List decoding for a~multiple access hyperchannel
\jour Probl. Peredachi Inf.
\yr 2016
\vol 52
\issue 4
\pages 14--30
\mathnet{http://mi.mathnet.ru/ppi2219}
\elib{https://elibrary.ru/item.asp?id=29472060}
\transl
\jour Problems Inform. Transmission
\yr 2016
\vol 52
\issue 4
\pages 329--343
\crossref{https://doi.org/10.1134/S0032946016040025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000392083800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008440756}
Linking options:
  • https://www.mathnet.ru/eng/ppi2219
  • https://www.mathnet.ru/eng/ppi/v52/i4/p14
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:321
    Full-text PDF :50
    References:42
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024