Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2016, Volume 52, Issue 3, Pages 84–91 (Mi ppi2213)  

This article is cited in 4 scientific papers (total in 4 papers)

Coding Theory

Multicomponent codes with maximum code distance

E. M. Gabidulin, N. I. Pilipchuk

Moscow Institute of Physics and Technology (State University), Moscow, Russia
Full-text PDF (171 kB) Citations (4)
References:
Abstract: We consider subspace codes, called multicomponent codes with zero prefix (MZP codes), whose subspace code distance is twice their dimension. We find values of parameters for which the codes are of the maximum cardinality. We construct combined codes where the last component of the multicomponent code is the code from [1] found by exhaustive search for particular parameter values. As a result, we obtain a family of subspace codes with maximum cardinality for a number of parameters. We show that the family of maximum-cardinality codes can be extended by using dual codes.
Funding agency Grant number
Russian Foundation for Basic Research 15-07-08480
Supported in part by the Russian Foundation for Basic Research, project no. 15-07-08480.
Received: 29.12.2015
Revised: 01.03.2016
English version:
Problems of Information Transmission, 2016, Volume 52, Issue 3, Pages 276–283
DOI: https://doi.org/10.1134/S0032946016030054
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: E. M. Gabidulin, N. I. Pilipchuk, “Multicomponent codes with maximum code distance”, Probl. Peredachi Inf., 52:3 (2016), 84–91; Problems Inform. Transmission, 52:3 (2016), 276–283
Citation in format AMSBIB
\Bibitem{GabPil16}
\by E.~M.~Gabidulin, N.~I.~Pilipchuk
\paper Multicomponent codes with maximum code distance
\jour Probl. Peredachi Inf.
\yr 2016
\vol 52
\issue 3
\pages 84--91
\mathnet{http://mi.mathnet.ru/ppi2213}
\elib{https://elibrary.ru/item.asp?id=27577190}
\transl
\jour Problems Inform. Transmission
\yr 2016
\vol 52
\issue 3
\pages 276--283
\crossref{https://doi.org/10.1134/S0032946016030054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386570000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84991728785}
Linking options:
  • https://www.mathnet.ru/eng/ppi2213
  • https://www.mathnet.ru/eng/ppi/v52/i3/p84
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :54
    References:35
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024