Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2016, Volume 52, Issue 3, Pages 73–83 (Mi ppi2212)  

This article is cited in 2 scientific papers (total in 2 papers)

Coding Theory

On the symmetry group of the Mollard code

I. Yu. Mogilnykh, F. I. Solov'eva

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (223 kB) Citations (2)
References:
Abstract: We study the symmetry group of a binary perfect Mollard code $M(C,D)$ of length $tm+t+m$ containing as its subcodes the codes $C^1$ and $D^2$ formed from perfect codes $C$ and $D$ of lengths $t$ and $m$, respectively, by adding an appropriate number of zeros. For the Mollard codes, we generalize the result obtained in [1] for the symmetry group of Vasil'ev codes; namely, we describe the stabilizer $\mathrm{Stab}_{D^2}\mathrm{Sym}(M(C,D))$ of the subcode $D^2$ in the symmetry group of the code $M(C,D)$ (with the trivial function). Thus we obtain a new lower bound on the order of the symmetry group of the Mollard code. A similar result is established for the automorphism group of Steiner triple systems obtained by the Mollard construction but not necessarily associated with perfect codes. To obtain this result, we essentially use the notions of “linearity” of coordinate positions (points) of a nonlinear perfect code and a nonprojective Steiner triple system.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-05867
13-01-00463а
16-01-00499
Supported by the Russian Foundation for Basic Research, project nos. 15-01-05867 and 13-01-00463.
Supported by the Russian Foundation for Basic Research, project no. 16-01-00499.
Received: 04.08.2015
Revised: 01.02.2016
English version:
Problems of Information Transmission, 2016, Volume 52, Issue 3, Pages 265–275
DOI: https://doi.org/10.1134/S0032946016030042
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: I. Yu. Mogilnykh, F. I. Solov'eva, “On the symmetry group of the Mollard code”, Probl. Peredachi Inf., 52:3 (2016), 73–83; Problems Inform. Transmission, 52:3 (2016), 265–275
Citation in format AMSBIB
\Bibitem{MogSol16}
\by I.~Yu.~Mogilnykh, F.~I.~Solov'eva
\paper On the symmetry group of the Mollard code
\jour Probl. Peredachi Inf.
\yr 2016
\vol 52
\issue 3
\pages 73--83
\mathnet{http://mi.mathnet.ru/ppi2212}
\elib{https://elibrary.ru/item.asp?id=27573115}
\transl
\jour Problems Inform. Transmission
\yr 2016
\vol 52
\issue 3
\pages 265--275
\crossref{https://doi.org/10.1134/S0032946016030042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386570000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84991711530}
Linking options:
  • https://www.mathnet.ru/eng/ppi2212
  • https://www.mathnet.ru/eng/ppi/v52/i3/p73
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:226
    Full-text PDF :46
    References:32
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024