Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1994, Volume 30, Issue 1, Pages 51–69 (Mi ppi220)  

This article is cited in 1 scientific paper (total in 1 paper)

Coding Theory

Decoding Reed–Solomon Codes Beyond $(d-1)/2$ and Zeros of Multivariate Polynomials

V. M. Sidel'nikov
Abstract: Let $\bold e$ be an error vector of weight $t$ and let $\bold b$ be its syndrome. In this work we consider a symmetric polynomial $O(y_1,\dots, y_r,\bold b)$ from $F_q[y_1,\dots,y_r]$ of degree $t-r+1$, where $r=2t-d+2$, which has the following property: if $\Omega$ is the set of error locations with syndrome $\bold b$, then any $r$-element subset $\Omega'$ of the set $\Omega$ is a zero of $O(y_1,\dots, y_r,\bold b)$. The converse is also true, namely, the zeros of $O(y_1,\dots, y_r,\bold b)$ determine all the locations of errors of weight $t$ whose syndrome equals $\bold b$, i.e., decoding and finding zeros of $O(y_1,\dots, y_r,\bold b)$ that lie in a prescribed set are equivalent problems. Based on these properties, we suggest a decoding algorithm of Reed–Solomon codes for $t>(d-1)/2$. A large part of the paper is devoted to the study of a nontrivial class of symmetric polynomials in $r$ variables formed by the polynomials $O(y_1,\dots, y_r,\bold b)$.
Received: 07.04.1993
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: V. M. Sidel'nikov, “Decoding Reed–Solomon Codes Beyond $(d-1)/2$ and Zeros of Multivariate Polynomials”, Probl. Peredachi Inf., 30:1 (1994), 51–69; Problems Inform. Transmission, 30:1 (1994), 44–59
Citation in format AMSBIB
\Bibitem{Sid94}
\by V.~M.~Sidel'nikov
\paper Decoding Reed--Solomon Codes Beyond $(d-1)/2$ and Zeros of Multivariate Polynomials
\jour Probl. Peredachi Inf.
\yr 1994
\vol 30
\issue 1
\pages 51--69
\mathnet{http://mi.mathnet.ru/ppi220}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1283971}
\zmath{https://zbmath.org/?q=an:0834.94018}
\transl
\jour Problems Inform. Transmission
\yr 1994
\vol 30
\issue 1
\pages 44--59
Linking options:
  • https://www.mathnet.ru/eng/ppi220
  • https://www.mathnet.ru/eng/ppi/v30/i1/p51
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024