Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2015, Volume 51, Issue 4, Pages 60–70 (Mi ppi2187)  

This article is cited in 1 scientific paper (total in 1 paper)

Large Systems

The Laguerre-and-sums-of-powers algorithm for the efficient and reliable approximation of all polynomial roots

H. Möller

Mathematical Institute, University of Münster, Münster, Germany
Full-text PDF (233 kB) Citations (1)
References:
Abstract: We prove the first sufficient convergence criterion for Laguerre's root-finding algorithm, which by empirical evidence is highly efficient. The criterion is applicable to simple roots of polynomials with degree greater than 3. The “Sums of Powers Algorithm” (SPA), which is a reliable iterative root-finding method, can be used to fulfill the condition for each root. Therefore, Laguerre's method together with the SPA is now an efficient and reliable algorithm (LaSPA). In computational mathematics these results solve a central task which was first attacked by L. Euler 266 years ago.
Received: 23.01.2015
Revised: 17.06.2015
English version:
Problems of Information Transmission, 2015, Volume 51, Issue 4, Pages 361–370
DOI: https://doi.org/10.1134/S0032946015040055
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.1
Language: Russian
Citation: H. Möller, “The Laguerre-and-sums-of-powers algorithm for the efficient and reliable approximation of all polynomial roots”, Probl. Peredachi Inf., 51:4 (2015), 60–70; Problems Inform. Transmission, 51:4 (2015), 361–370
Citation in format AMSBIB
\Bibitem{Mol15}
\by H.~M\"oller
\paper The Laguerre-and-sums-of-powers algorithm for the efficient and reliable approximation of all polynomial roots
\jour Probl. Peredachi Inf.
\yr 2015
\vol 51
\issue 4
\pages 60--70
\mathnet{http://mi.mathnet.ru/ppi2187}
\transl
\jour Problems Inform. Transmission
\yr 2015
\vol 51
\issue 4
\pages 361--370
\crossref{https://doi.org/10.1134/S0032946015040055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000367604200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84952914801}
Linking options:
  • https://www.mathnet.ru/eng/ppi2187
  • https://www.mathnet.ru/eng/ppi/v51/i4/p60
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025