Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2015, Volume 51, Issue 4, Pages 23–31 (Mi ppi2184)  

This article is cited in 4 scientific papers (total in 4 papers)

Coding Theory

Nonexistence of binary orthogonal arrays via their distance distributions

P. Boyvalenkovab, H. Kulinac, T. Marinovad, M. Stoyanovad

a Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
b Faculty of Mathematics and Natural Sciences, South-Western University, Blagoevgrad, Bulgaria
c Faculty of Mathematics and Informatics, Plovdiv University, Plovdiv, Bulgaria
d Faculty of Mathematics and Informatics, Sofia University, Sofia, Bulgaria
Full-text PDF (185 kB) Citations (4)
References:
Abstract: We investigate binary orthogonal arrays by making use of the fact that all possible distance distributions of the arrays under investigation and of related arrays can be computed. We apply certain relations for reducing the number of feasible distance distributions. In some cases this leads to nonexistence results. In particular, we prove that there exist no binary orthogonal arrays with parameters $(\text{strength, length, cardinality})=(4,10,6\cdot2^4)$, $(4,11,6\cdot2^4)$, $(4,12,7\cdot2^4)$, $(5,11,6\cdot2^5)$, $(5,12,6\cdot2^5)$ and $(5,13,7\cdot2^5)$.
Funding agency Grant number
Bulgarian National Science Fund I01/0003
Plovdiv University "Paisii Hilendarski" НИ15 ФМИ-004
Sofia University St. Kliment Ohridski 015/2014
Supported by the Bulgarian National Science Foundation under Contract I01/0003.
Supported in part by the NPD, Plovdiv University, Bulgaria, project NI15 FMI-004.
Supported in part by the Science Foundation of Sofia University, Bulgaria, under Contract 015/2014.
Received: 20.12.2014
Revised: 20.07.2015
English version:
Problems of Information Transmission, 2015, Volume 51, Issue 4, Pages 326–334
DOI: https://doi.org/10.1134/S003294601504002X
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.7
Language: Russian
Citation: P. Boyvalenkov, H. Kulina, T. Marinova, M. Stoyanova, “Nonexistence of binary orthogonal arrays via their distance distributions”, Probl. Peredachi Inf., 51:4 (2015), 23–31; Problems Inform. Transmission, 51:4 (2015), 326–334
Citation in format AMSBIB
\Bibitem{BoyKulMar15}
\by P.~Boyvalenkov, H.~Kulina, T.~Marinova, M.~Stoyanova
\paper Nonexistence of binary orthogonal arrays via their distance distributions
\jour Probl. Peredachi Inf.
\yr 2015
\vol 51
\issue 4
\pages 23--31
\mathnet{http://mi.mathnet.ru/ppi2184}
\transl
\jour Problems Inform. Transmission
\yr 2015
\vol 51
\issue 4
\pages 326--334
\crossref{https://doi.org/10.1134/S003294601504002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000367604200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84952926454}
Linking options:
  • https://www.mathnet.ru/eng/ppi2184
  • https://www.mathnet.ru/eng/ppi/v51/i4/p23
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025