Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2015, Volume 51, Issue 2, Pages 27–49 (Mi ppi2168)  

This article is cited in 11 scientific papers (total in 11 papers)

Coding Theory

Almost disjunctive list-decoding codes

A. G. D'yachkov, I. V. Vorob'ev, N. A. Polyansky, V. Yu. Shchukin

Probability Theory Chair, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We say that an $s$-subset of codewords of a binary code $X$ is $s_L$-bad in $X$ if there exists an $L$-subset of other codewords in $X$ whose disjunctive sum is covered by the disjunctive sum of the given $s$ codewords. Otherwise, this $s$-subset of codewords is said to be $s_L$-good in $X$. A binary code $X$ is said to be a list-decoding disjunctive code of strength $s$ and list size $L$ (an $s_L$-LD code) if it does not contain $s_L$-bad subsets of codewords. We consider a probabilistic generalization of $s_L$-LD codes; namely, we say that a code $X$ is an almost disjunctive $s_L$-LD code if the fraction of $s_L$-good subsets of codewords in $X$ is close to 1. Using the random coding method on the ensemble of binary constant-weight codes, we establish lower bounds on the capacity and error exponent of almost disjunctive $s_L$-LD codes. For this ensemble, the obtained lower bounds are tight and show that the capacity of almost disjunctive $s_L$-LD codes is greater than the zero-error capacity of disjunctive $s_L$-LD codes.
Received: 16.09.2014
Revised: 28.01.2015
English version:
Problems of Information Transmission, 2015, Volume 51, Issue 2, Pages 110–131
DOI: https://doi.org/10.1134/S0032946015020039
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: A. G. D'yachkov, I. V. Vorob'ev, N. A. Polyansky, V. Yu. Shchukin, “Almost disjunctive list-decoding codes”, Probl. Peredachi Inf., 51:2 (2015), 27–49; Problems Inform. Transmission, 51:2 (2015), 110–131
Citation in format AMSBIB
\Bibitem{DyaVorPol15}
\by A.~G.~D'yachkov, I.~V.~Vorob'ev, N.~A.~Polyansky, V.~Yu.~Shchukin
\paper Almost disjunctive list-decoding codes
\jour Probl. Peredachi Inf.
\yr 2015
\vol 51
\issue 2
\pages 27--49
\mathnet{http://mi.mathnet.ru/ppi2168}
\elib{https://elibrary.ru/item.asp?id=24959164}
\transl
\jour Problems Inform. Transmission
\yr 2015
\vol 51
\issue 2
\pages 110--131
\crossref{https://doi.org/10.1134/S0032946015020039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357472800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943244613}
Linking options:
  • https://www.mathnet.ru/eng/ppi2168
  • https://www.mathnet.ru/eng/ppi/v51/i2/p27
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024