Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2003, Volume 39, Issue 2, Pages 29–35 (Mi ppi215)  

This article is cited in 2 scientific papers (total in 2 papers)

Information Theory and Coding Theory

New Quasi-Cyclic Degenerate Linear Codes over $GF(8)$

R. N. Daskalov, P. V. Hristov
Full-text PDF (751 kB) Citations (2)
References:
Abstract: Let $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$, and minimum Hamming distance $d$ over $GF(q)$. One of the most important problems in coding theory is to construct codes with best possible minimum distances. Recently, quasi-cyclic (QC) codes were proved to contain many such codes. In this paper, twenty-five new codes over $GF(8)$ are constructed, which improve the best known lower bounds on minimum distance.
Received: 18.04.2002
Revised: 23.01.2003
English version:
Problems of Information Transmission, 2003, Volume 39, Issue 2, Pages 184–190
DOI: https://doi.org/10.1023/A:1025100305167
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: R. N. Daskalov, P. V. Hristov, “New Quasi-Cyclic Degenerate Linear Codes over $GF(8)$”, Probl. Peredachi Inf., 39:2 (2003), 29–35; Problems Inform. Transmission, 39:2 (2003), 184–190
Citation in format AMSBIB
\Bibitem{DasHri03}
\by R.~N.~Daskalov, P.~V.~Hristov
\paper New Quasi-Cyclic Degenerate Linear Codes over $GF(8)$
\jour Probl. Peredachi Inf.
\yr 2003
\vol 39
\issue 2
\pages 29--35
\mathnet{http://mi.mathnet.ru/ppi215}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2105859}
\zmath{https://zbmath.org/?q=an:1088.94022}
\transl
\jour Problems Inform. Transmission
\yr 2003
\vol 39
\issue 2
\pages 184--190
\crossref{https://doi.org/10.1023/A:1025100305167}
Linking options:
  • https://www.mathnet.ru/eng/ppi215
  • https://www.mathnet.ru/eng/ppi/v39/i2/p29
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :126
    References:35
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024