Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2014, Volume 50, Issue 4, Pages 3–14 (Mi ppi2149)  

This article is cited in 3 scientific papers (total in 3 papers)

Coding Theory

Successive cancellation decoding of Reed–Solomon codes

P. V. Trifonov

St. Petersburg State Polytechnical University, St. Petersburg, Russia
Full-text PDF (217 kB) Citations (3)
References:
Abstract: A novel soft-decision decoding algorithm for Reed-Solomon codes over GF(2m) is proposed, which is based on representing them as polar codes with dynamic frozen symbols and applying the successive cancellation method. A further performance improvement is obtained by exploiting multiple permutations of codewords which are taken from the automorphism group of Reed–Muller codes. It is also shown that the proposed algorithm can be simplified in the case of decoding a binary image of the Reed–Solomon code.
Received: 30.12.2013
Revised: 12.08.2014
English version:
Problems of Information Transmission, 2014, Volume 50, Issue 4, Pages 303–312
DOI: https://doi.org/10.1134/S0032946014040012
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: P. V. Trifonov, “Successive cancellation decoding of Reed–Solomon codes”, Probl. Peredachi Inf., 50:4 (2014), 3–14; Problems Inform. Transmission, 50:4 (2014), 303–312
Citation in format AMSBIB
\Bibitem{Tri14}
\by P.~V.~Trifonov
\paper Successive cancellation decoding of Reed--Solomon codes
\jour Probl. Peredachi Inf.
\yr 2014
\vol 50
\issue 4
\pages 3--14
\mathnet{http://mi.mathnet.ru/ppi2149}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3374252}
\transl
\jour Problems Inform. Transmission
\yr 2014
\vol 50
\issue 4
\pages 303--312
\crossref{https://doi.org/10.1134/S0032946014040012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347532800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920593677}
Linking options:
  • https://www.mathnet.ru/eng/ppi2149
  • https://www.mathnet.ru/eng/ppi/v50/i4/p3
  • This publication is cited in the following 3 articles:
    1. Peter Trifonov, 2018 Information Theory and Applications Workshop (ITA), 2018, 1  crossref
    2. P. Trifonov, V. Miloslavskaya, “Polar Subcodes”, IEEE J. Sel. Areas Commun., 34:2 (2016), 254–266  crossref  isi  elib  scopus
    3. V. A. Lyubetsky, A. V. Seliverstov, “A novel algorithm for solution of a combinatory set partitioning problem”, J. Commun. Technol. Electron., 61:6 (2016), 705  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:659
    Full-text PDF :221
    References:71
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025