Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2014, Volume 50, Issue 3, Pages 51–75 (Mi ppi2144)  

This article is cited in 2 scientific papers (total in 2 papers)

Coding Theory

DNA codes for nonadditive stem similarity

A. G. D'yachkova, A. N. Kuzinaa, N. A. Polyanskya, A. Maculab, V. V. Rykovc

a Probability Theory Chair, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Department of Mathematics, The State University of New York at Geneseo, Geneseo, NY, USA
c University of Nebraska Omaha, Omaha, NE, USA
Full-text PDF (422 kB) Citations (2)
References:
Abstract: DNA sequences are sequences with elements from the quaternary DNA alphabet $\{A,C,G,T\}$. An important property of them is their directedness and ability to form duplexes as a result of hybridization process, i.e., coalescing two oppositely directed sequences. In biological experiments exploiting this property it is necessary to generate an ensemble of such sequences (DNA codes) consisting of pairs of DNA sequences referred to as Watson–Crick duplexes. Furthermore, for any two words of the DNA code that do not form a Watson–Crick duplex, hybridization energy – stability measure of a potential DNA duplex – is upper bounded by a constant specified by conditions of an experiment. This problem can naturally be interpreted in terms of coding theory. Continuing our previous works, we consider a nonadditive similarity function for two DNA sequences, which most adequately models their hybridization energy. For the maximum cardinality of DNA codes based on this similarity, we establish a Singleton upper bound and present an example of an optimal construction. Using ensembles of DNA codes with special constraints on codewords, which we call Fibonacci ensembles, we obtain a random-coding lower bound on the maximum cardinality of DNA codes under this similarity function.
Received: 24.06.2013
Revised: 16.12.2013
English version:
Problems of Information Transmission, 2014, Volume 50, Issue 3, Pages 247–269
DOI: https://doi.org/10.1134/S0032946014030041
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: A. G. D'yachkov, A. N. Kuzina, N. A. Polyansky, A. Macula, V. V. Rykov, “DNA codes for nonadditive stem similarity”, Probl. Peredachi Inf., 50:3 (2014), 51–75; Problems Inform. Transmission, 50:3 (2014), 247–269
Citation in format AMSBIB
\Bibitem{DyaKuzPol14}
\by A.~G.~D'yachkov, A.~N.~Kuzina, N.~A.~Polyansky, A.~Macula, V.~V.~Rykov
\paper DNA codes for nonadditive stem similarity
\jour Probl. Peredachi Inf.
\yr 2014
\vol 50
\issue 3
\pages 51--75
\mathnet{http://mi.mathnet.ru/ppi2144}
\transl
\jour Problems Inform. Transmission
\yr 2014
\vol 50
\issue 3
\pages 247--269
\crossref{https://doi.org/10.1134/S0032946014030041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343931900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84910006769}
Linking options:
  • https://www.mathnet.ru/eng/ppi2144
  • https://www.mathnet.ru/eng/ppi/v50/i3/p51
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :77
    References:62
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025