Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2003, Volume 39, Issue 2, Pages 23–28 (Mi ppi214)  

This article is cited in 12 scientific papers (total in 12 papers)

Information Theory and Coding Theory

To Metric Rigidity of Binary Codes

S. V. Avgustinovich, F. I. Solov'eva
References:
Abstract: A code $C$ in the $n$-dimensional metric space $E^n$ over $GF(2)$ is called metrically rigid if each isometry $I\colon C\to E^n$ can be extended to an isometry of the whole space $E^n$. For $n$ large enough, metrical rigidity of any length-$n$ binary code that contains a $2-(n,k,\lambda)$–design is proved. The class of such codes includes, for instance, all families of uniformly packed codes of large enough lengths that satisfy the condition $d-\rho\geq 2$, where $d$ is the code distance and $\rho$ is the covering radius.
Received: 14.06.2002
Revised: 04.09.2002
English version:
Problems of Information Transmission, 2003, Volume 39, Issue 2, Pages 178–183
DOI: https://doi.org/10.1023/A:1025148221096
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: S. V. Avgustinovich, F. I. Solov'eva, “To Metric Rigidity of Binary Codes”, Probl. Peredachi Inf., 39:2 (2003), 23–28; Problems Inform. Transmission, 39:2 (2003), 178–183
Citation in format AMSBIB
\Bibitem{AvgSol03}
\by S.~V.~Avgustinovich, F.~I.~Solov'eva
\paper To Metric Rigidity of Binary Codes
\jour Probl. Peredachi Inf.
\yr 2003
\vol 39
\issue 2
\pages 23--28
\mathnet{http://mi.mathnet.ru/ppi214}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2105858}
\zmath{https://zbmath.org/?q=an:1089.94039}
\transl
\jour Problems Inform. Transmission
\yr 2003
\vol 39
\issue 2
\pages 178--183
\crossref{https://doi.org/10.1023/A:1025148221096}
Linking options:
  • https://www.mathnet.ru/eng/ppi214
  • https://www.mathnet.ru/eng/ppi/v39/i2/p23
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:508
    Full-text PDF :134
    References:52
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024