Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2014, Volume 50, Issue 2, Pages 31–59 (Mi ppi2138)  

This article is cited in 3 scientific papers (total in 3 papers)

Information Theory

Error exponents for Nakagami-$m$ fading channels

J. Xue, M. Z. I. Sarkar, T. Ratnarajah

Institute for Digital Communications (IDCOM), the University of Edinburgh, Edinburgh, UK
Full-text PDF (530 kB) Citations (3)
References:
Abstract: Along with the channel capacity, the error exponent is one of the most important information-theoretic measures of reliability, as it sets ultimate bounds on the performance of communication systems employing codes of finite complexity. In this paper, we derive an exact analytical expression for the random coding error exponent, which provides significant insight regarding the ultimate limits to communications through Nakagami-$m$ fading channels. An important fact about this error exponent is that it determines the behavior of error probability in terms of the transmission rate and the code length that reflects the coding complexity required to achieve a certain level of reliability. Moreover, from the derived analytical expression, we can easily compute the necessary codeword length without extensive Monte-Carlo simulation to achieve a predefined upper bound for error probability at a rate below the channel capacity. We also improve the random coding bound by expurgating bad codewords from the code ensemble, since random coding error exponent is determined by selecting codewords independently according to the input distribution where good and bad codewords contribute equally to the overall average error probability. Finally, we derive exact analytical expressions for the cutoff rate, critical rate, and expurgation rate and verify the analytical expressions via Monte-Carlo simulation.
Received: 12.02.2013
Revised: 27.10.2013
English version:
Problems of Information Transmission, 2014, Volume 50, Issue 2, Pages 144–170
DOI: https://doi.org/10.1134/S0032946014020033
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.72
Language: Russian
Citation: J. Xue, M. Z. I. Sarkar, T. Ratnarajah, “Error exponents for Nakagami-$m$ fading channels”, Probl. Peredachi Inf., 50:2 (2014), 31–59; Problems Inform. Transmission, 50:2 (2014), 144–170
Citation in format AMSBIB
\Bibitem{XueSarRat14}
\by J.~Xue, M.~Z.~I.~Sarkar, T.~Ratnarajah
\paper Error exponents for Nakagami-$m$ fading channels
\jour Probl. Peredachi Inf.
\yr 2014
\vol 50
\issue 2
\pages 31--59
\mathnet{http://mi.mathnet.ru/ppi2138}
\transl
\jour Problems Inform. Transmission
\yr 2014
\vol 50
\issue 2
\pages 144--170
\crossref{https://doi.org/10.1134/S0032946014020033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000339384800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904416186}
Linking options:
  • https://www.mathnet.ru/eng/ppi2138
  • https://www.mathnet.ru/eng/ppi/v50/i2/p31
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :75
    References:42
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024