Abstract:
We consider incidence matrices for points and lines of affine and projective geometries over a field of four elements. For such matrices we derive a simple formula for the 2-rank and, as a consequence, new combinatorial identities expressing the relation of the obtained formulas for the rank with previously known formulas. We also present a way to construct generating systems for rows of these matrices.
Citation:
M. E. Kovalenko, T. A. Urbanovich, “On the rank of incidence matrices for points and lines of finite affine and projective geometries over a field of four elements”, Probl. Peredachi Inf., 50:1 (2014), 87–97; Problems Inform. Transmission, 50:1 (2014), 79–89
\Bibitem{KovUrb14}
\by M.~E.~Kovalenko, T.~A.~Urbanovich
\paper On the rank of incidence matrices for points and lines of finite affine and projective geometries over a~field of four elements
\jour Probl. Peredachi Inf.
\yr 2014
\vol 50
\issue 1
\pages 87--97
\mathnet{http://mi.mathnet.ru/ppi2133}
\transl
\jour Problems Inform. Transmission
\yr 2014
\vol 50
\issue 1
\pages 79--89
\crossref{https://doi.org/10.1134/S0032946014010050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334517000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899494764}
Linking options:
https://www.mathnet.ru/eng/ppi2133
https://www.mathnet.ru/eng/ppi/v50/i1/p87
This publication is cited in the following 2 articles:
M. E. Kovalenko, “O radiuse pokrytiya lineinykh kodov, porozhdennykh affinnymi geometriyami nad polem iz chetyrekh elementov”, PDM, 2014, no. 4(26), 72–77
S. N. Popova, “Zero-one laws for random distance graphs with vertices in {0, 1} n”, Dokl. Math., 90:2 (2014), 535