|
Problemy Peredachi Informatsii, 2013, Volume 49, Issue 4, Pages 57–63
(Mi ppi2123)
|
|
|
|
Coding Theory
A new subclass of cyclic Goppa codes
S. V. Bezzateev, N. A. Shekhunova St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia
Abstract:
We propose a subclass of cyclic Goppa codes given by separable self-reciprocal Goppa polynomials of degree two. We prove that this subclass contains all reversible cyclic codes of length $n$, $n\mid(q^m\pm1)$, with a generator polynomial $g(x)$, $g(\alpha^{\pm i})=0$, $i=0,1$, $\alpha^n=1$, $\alpha\in GF(q^{2m})$.
Received: 12.03.2013 Revised: 01.10.2013
Citation:
S. V. Bezzateev, N. A. Shekhunova, “A new subclass of cyclic Goppa codes”, Probl. Peredachi Inf., 49:4 (2013), 57–63; Problems Inform. Transmission, 49:4 (2013), 348–353
Linking options:
https://www.mathnet.ru/eng/ppi2123 https://www.mathnet.ru/eng/ppi/v49/i4/p57
|
Statistics & downloads: |
Abstract page: | 311 | Full-text PDF : | 102 | References: | 35 | First page: | 15 |
|