Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2013, Volume 49, Issue 2, Pages 78–91 (Mi ppi2110)  

This article is cited in 17 scientific papers (total in 17 papers)

Communication Network Theory

Analysis of an open non-Markovian $GI-(GI\mid\infty)^K$ queueing network with high-rate renewal arrival process

A. A. Nazarov, A. N. Moiseev

Tomsk State University
References:
Abstract: We analyze an open non-Markovian queueing network with high-rate renewal arrival process, Markovian routing, arbitrary service policy, and unlimited number of servers at nodes. We obtain mean values for the number of busy servers at nodes of the queueing network in question. We show that, under an infinitely increasing arrival rate, the multivariate distribution of the number of busy servers at network nodes can be approximated by a multivariate normal distribution; we find parameters of this distribution.
Received: 10.08.2012
Revised: 10.01.2013
English version:
Problems of Information Transmission, 2013, Volume 49, Issue 2, Pages 167–178
DOI: https://doi.org/10.1134/S0032946013020063
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.872
Language: Russian
Citation: A. A. Nazarov, A. N. Moiseev, “Analysis of an open non-Markovian $GI-(GI\mid\infty)^K$ queueing network with high-rate renewal arrival process”, Probl. Peredachi Inf., 49:2 (2013), 78–91; Problems Inform. Transmission, 49:2 (2013), 167–178
Citation in format AMSBIB
\Bibitem{NazMoi13}
\by A.~A.~Nazarov, A.~N.~Moiseev
\paper Analysis of an open non-Markovian $GI-(GI\mid\infty)^K$ queueing network with high-rate renewal arrival process
\jour Probl. Peredachi Inf.
\yr 2013
\vol 49
\issue 2
\pages 78--91
\mathnet{http://mi.mathnet.ru/ppi2110}
\transl
\jour Problems Inform. Transmission
\yr 2013
\vol 49
\issue 2
\pages 167--178
\crossref{https://doi.org/10.1134/S0032946013020063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321870600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880409352}
Linking options:
  • https://www.mathnet.ru/eng/ppi2110
  • https://www.mathnet.ru/eng/ppi/v49/i2/p78
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:554
    Full-text PDF :116
    References:59
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024