Loading [MathJax]/jax/output/CommonHTML/jax.js
Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2013, Volume 49, Issue 2, Pages 3–16 (Mi ppi2105)  

This article is cited in 6 scientific papers (total in 6 papers)

Information Theory

Some properties of Rényi entropy over countably infinite alphabets

M. Kovačević, I. Stanojević, V. Šenk

University of Novi Sad, Serbia
Full-text PDF (234 kB) Citations (6)
References:
Abstract: We study certain properties of Rényi entropy functionals Hα(P) on the space of probability distributions over Z+. Primarily, continuity and convergence issues are addressed. Some properties are shown to be parallel to those known in the finite alphabet case, while others illustrate a quite different behavior of the Rényi entropy in the infinite case. In particular, it is shown that for any distribution P and any r[0,] there exists a sequence of distributions Pn converging to P with respect to the total variation distance and such that limnlimα1+Hα(Pn)=limα1+limnHα(Pn)+r.
Received: 03.12.2012
Revised: 30.01.2013
English version:
Problems of Information Transmission, 2013, Volume 49, Issue 2, Pages 99–110
DOI: https://doi.org/10.1134/S0032946013020014
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.72
Language: Russian
Citation: M. Kovačević, I. Stanojević, V. Šenk, “Some properties of Rényi entropy over countably infinite alphabets”, Probl. Peredachi Inf., 49:2 (2013), 3–16; Problems Inform. Transmission, 49:2 (2013), 99–110
Citation in format AMSBIB
\Bibitem{KovStaSen13}
\by M.~Kova{\v{c}}evi{\'c}, I.~Stanojevi{\'c}, V.~{\v S}enk
\paper Some properties of R\'enyi entropy over countably infinite alphabets
\jour Probl. Peredachi Inf.
\yr 2013
\vol 49
\issue 2
\pages 3--16
\mathnet{http://mi.mathnet.ru/ppi2105}
\transl
\jour Problems Inform. Transmission
\yr 2013
\vol 49
\issue 2
\pages 99--110
\crossref{https://doi.org/10.1134/S0032946013020014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321870600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880416990}
Linking options:
  • https://www.mathnet.ru/eng/ppi2105
  • https://www.mathnet.ru/eng/ppi/v49/i2/p3
  • This publication is cited in the following 6 articles:
    1. Sakai Yu., Yavas R.C., Tan V.Y.F., “Third-Order Asymptotics of Variable-Length Compression Allowing Errors”, IEEE Trans. Inf. Theory, 67:12 (2021), 7708–7722  crossref  mathscinet  zmath  isi  scopus
    2. Sakai Yu., “Generalizations of Fano'S Inequality For Conditional Information Measures Via Majorization Theory”, Entropy, 22:3 (2020), 288  crossref  mathscinet  isi  scopus
    3. Shilpa Bansal, Nitin Gupta, Studies in Computational Intelligence, 863, Recent Advances in Intelligent Information Systems and Applied Mathematics, 2020, 209  crossref
    4. Yu. Sakai, “Generalized Fano-type inequality for countably infinite systems with list-decoding”, Proceedings of 2018 International Symposium on Information Theory and Its Applications (ISITA), IEEE, 2018, 727–731  crossref  isi
    5. Courtade T.A., Verdu S., “Cumulant Generating Function of Codeword Lengths in Optimal Lossless Compression”, 2014 IEEE International Symposium on Information Theory (Isit), IEEE International Symposium on Information Theory, IEEE, 2014, 2494–2498  isi
    6. Thomas A. Courtade, Sergio Verdu, 2014 IEEE International Symposium on Information Theory, 2014, 2494  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:273
    Full-text PDF :68
    References:49
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025