Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2012, Volume 48, Issue 4, Pages 41–49 (Mi ppi2093)  

This article is cited in 1 scientific paper (total in 1 paper)

Coding Theory

On Walsh code assignment

B. S. Tsybakov, A. B. Tsybakova

a Laboratoire de Statistique, CREST-ENSAE, Malakoff, France
Full-text PDF (807 kB) Citations (1)
References:
Abstract: We consider the problem of orthogonal variable spreading Walsh code assignments. The aim is to provide assignments that can avoid both complicated signaling from the BS to the users and blind rate and code detection amongst a great number of possible codes. The assignments considered here use partitioning of all users into several pools. Each pool can use its own codes, which are different for different pools. Each user has only a few codes assigned to it within the pool. We state the problem as a combinatorial one expressed in terms of a binary $n\times k$ matrix $\boldsymbol M$ where $n$ is the number of users and $k$ is the number of Walsh codes in the pool. A solution to the problem is given as a construction of a matrix $\boldsymbol M$ which has the assignment property defined in the paper. Two constructions of such $\boldsymbol M$ are presented under different conditions on $n$ and $k$. The first construction is optimal in the sense that it gives the minimal number of Walsh codes – assigned to each user for given $n$ and $k$. The optimality follows from a proved necessary condition for the existence of $\boldsymbol M$ with the assignment property. In addition, we propose a simple algorithm of optimal assignment for the first construction.
Received: 03.09.2012
English version:
Problems of Information Transmission, 2012, Volume 48, Issue 4, Pages 334–341
DOI: https://doi.org/10.1134/S0032946012040035
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: B. S. Tsybakov, A. B. Tsybakov, “On Walsh code assignment”, Probl. Peredachi Inf., 48:4 (2012), 41–49; Problems Inform. Transmission, 48:4 (2012), 334–341
Citation in format AMSBIB
\Bibitem{TsyTsy12}
\by B.~S.~Tsybakov, A.~B.~Tsybakov
\paper On Walsh code assignment
\jour Probl. Peredachi Inf.
\yr 2012
\vol 48
\issue 4
\pages 41--49
\mathnet{http://mi.mathnet.ru/ppi2093}
\transl
\jour Problems Inform. Transmission
\yr 2012
\vol 48
\issue 4
\pages 334--341
\crossref{https://doi.org/10.1134/S0032946012040035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314036400003}
Linking options:
  • https://www.mathnet.ru/eng/ppi2093
  • https://www.mathnet.ru/eng/ppi/v48/i4/p41
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:477
    Full-text PDF :90
    References:47
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024