Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2012, Volume 48, Issue 3, Pages 23–46 (Mi ppi2083)  

This article is cited in 5 scientific papers (total in 5 papers)

Information Theory

On the Hilbert transform of bounded bandlimited signals

H. Boche, U. Mönich

Technische Universität München, Germany
Full-text PDF (310 kB) Citations (5)
References:
Abstract: In this paper we analyze the Hilbert transform and existence of the analytical signal for the space $\mathcal B_\pi^\infty$ of bandlimited signals that are bounded on the real axis. Originally, the theory was developed for signals in $L^2(\mathbb R)$ and then extended to larger signal spaces. While it is well known that the common integral representation of the Hilbert transform may diverge for some signals in $\mathcal B_\pi^\infty$ and that the Hilbert transform is not a bounded operator on $\mathcal B_\pi^\infty$, it is nevertheless possible to define the Hilbert transform for the space $\mathcal B_\pi^\infty$. We use a definition that is based on the $\mathcal H^1$$\mathrm{BMO}(\mathbb R)$ duality. This abstract definition, which can be used for general bounded signals, gives no constructive procedure to compute the Hilbert transform. However, for the practically important special case of bounded bandlimited signals, we can provide such an explicit procedure by giving a closed-form expression for the Hilbert transform. Further, it is shown that the Hilbert transform of a signal in $\mathcal B_\pi^\infty$ is still bandlimited but not necessarily bounded. With these results we continue the work of [1,2].
Received: 14.09.2011
English version:
Problems of Information Transmission, 2012, Volume 48, Issue 3, Pages 217–238
DOI: https://doi.org/10.1134/S0032946012030027
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+517
Language: Russian
Citation: H. Boche, U. Mönich, “On the Hilbert transform of bounded bandlimited signals”, Probl. Peredachi Inf., 48:3 (2012), 23–46; Problems Inform. Transmission, 48:3 (2012), 217–238
Citation in format AMSBIB
\Bibitem{BocMon12}
\by H.~Boche, U.~M\"onich
\paper On the Hilbert transform of bounded bandlimited signals
\jour Probl. Peredachi Inf.
\yr 2012
\vol 48
\issue 3
\pages 23--46
\mathnet{http://mi.mathnet.ru/ppi2083}
\transl
\jour Problems Inform. Transmission
\yr 2012
\vol 48
\issue 3
\pages 217--238
\crossref{https://doi.org/10.1134/S0032946012030027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310208200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870678837}
Linking options:
  • https://www.mathnet.ru/eng/ppi2083
  • https://www.mathnet.ru/eng/ppi/v48/i3/p23
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:482
    Full-text PDF :86
    References:63
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024