Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2012, Volume 48, Issue 2, Pages 79–99 (Mi ppi2076)  

This article is cited in 1 scientific paper (total in 1 paper)

Automata Theory

Toom's partial order is transitive

M. A. Raskin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
Full-text PDF (269 kB) Citations (1)
References:
Abstract: We prove that the partial order on measures on biinfinite sequences proposed by Toom is transitive. This partial order was introduced as a possible tool for proving nonergodicity of some cellular automata.
Received: 11.04.2011
Revised: 16.01.2012
English version:
Problems of Information Transmission, 2012, Volume 48, Issue 2, Pages 154–172
DOI: https://doi.org/10.1134/S0032946012020056
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.713
Language: Russian
Citation: M. A. Raskin, “Toom's partial order is transitive”, Probl. Peredachi Inf., 48:2 (2012), 79–99; Problems Inform. Transmission, 48:2 (2012), 154–172
Citation in format AMSBIB
\Bibitem{Ras12}
\by M.~A.~Raskin
\paper Toom's partial order is transitive
\jour Probl. Peredachi Inf.
\yr 2012
\vol 48
\issue 2
\pages 79--99
\mathnet{http://mi.mathnet.ru/ppi2076}
\transl
\jour Problems Inform. Transmission
\yr 2012
\vol 48
\issue 2
\pages 154--172
\crossref{https://doi.org/10.1134/S0032946012020056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000306338300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865775743}
Linking options:
  • https://www.mathnet.ru/eng/ppi2076
  • https://www.mathnet.ru/eng/ppi/v48/i2/p79
    Erratum
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025