Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2012, Volume 48, Issue 2, Pages 65–78 (Mi ppi2075)  

This article is cited in 2 scientific papers (total in 2 papers)

Methods of Signal Processing

Sequential estimation of a threshold crossing time for a Gaussian random walk through correlated observations

M. V. Burnasheva, A. Tchamkertenb

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
b Communications and Electronics Department, Télécom ParisTech, France
Full-text PDF (255 kB) Citations (2)
References:
Abstract: Given a Gaussian random walk $X$ with drift, we consider the problem of estimating its first-passage time $\tau_A$ for a given level $A$ from an observation process $Y$ correlated to $X$. Estimators may be any stopping times $\eta$ with respect to the observation process $Y$. Two cases of the process $Y$ are considered: a noisy version of $X$ and a process $X$ with delay $d$. For a given loss function $f(x)$, in both cases we find exact asymptotics of the minimal possible risk $\mathbf E f((\eta-\tau_A)/r)$ as $A,d\to\infty$, where $r$ is a normalizing coefficient. The results are extended to the corresponding continuous-time setting where $X$ and $Y$ are Brownian motions with drift.
Received: 09.02.2012
Revised: 13.04.2012
English version:
Problems of Information Transmission, 2012, Volume 48, Issue 2, Pages 142–153
DOI: https://doi.org/10.1134/S0032946012020044
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.2
Language: Russian
Citation: M. V. Burnashev, A. Tchamkerten, “Sequential estimation of a threshold crossing time for a Gaussian random walk through correlated observations”, Probl. Peredachi Inf., 48:2 (2012), 65–78; Problems Inform. Transmission, 48:2 (2012), 142–153
Citation in format AMSBIB
\Bibitem{BurTch12}
\by M.~V.~Burnashev, A.~Tchamkerten
\paper Sequential estimation of a~threshold crossing time for a~Gaussian random walk through correlated observations
\jour Probl. Peredachi Inf.
\yr 2012
\vol 48
\issue 2
\pages 65--78
\mathnet{http://mi.mathnet.ru/ppi2075}
\transl
\jour Problems Inform. Transmission
\yr 2012
\vol 48
\issue 2
\pages 142--153
\crossref{https://doi.org/10.1134/S0032946012020044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000306338300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865763407}
Linking options:
  • https://www.mathnet.ru/eng/ppi2075
  • https://www.mathnet.ru/eng/ppi/v48/i2/p65
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025