Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2011, Volume 47, Issue 4, Pages 27–42 (Mi ppi2058)  

This article is cited in 4 scientific papers (total in 4 papers)

Coding Theory

Bounds on the minimum code distance for nonbinary codes based on bipartite graphs

A. Frolov, V. V. Zyablov

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Full-text PDF (417 kB) Citations (4)
References:
Abstract: The minimum distance of codes on bipartite graphs (BG codes) over $GF(q)$ is studied. A new upper bound on the minimum distance of BG codes is derived. The bound is shown to lie below the Gilbert–Varshamov bound when $q\ge32$. Since the codes based on bipartite expander graphs (BEG codes) are a special case of BG codes and the resulting bound is valid for any BG code, it is also valid for BEG codes. Thus, nonbinary ($q\ge32$) BG codes are worse than the best known linear codes. This is the key result of the work. We also obtain a lower bound on the minimum distance of BG codes with a Reed-Solomon constituent code and a lower bound on the minimum distance of low-density parity-check (LDPC) codes with a Reed–Solomon constituent code. The bound for LDPC codes is very close to the Gilbert–Varshamov bound and lies above the upper bound for BG codes.
Received: 28.03.2011
Revised: 19.09.2011
English version:
Problems of Information Transmission, 2011, Volume 47, Issue 4, Pages 327–341
DOI: https://doi.org/10.1134/S0032946011040028
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: A. Frolov, V. V. Zyablov, “Bounds on the minimum code distance for nonbinary codes based on bipartite graphs”, Probl. Peredachi Inf., 47:4 (2011), 27–42; Problems Inform. Transmission, 47:4 (2011), 327–341
Citation in format AMSBIB
\Bibitem{FroZya11}
\by A.~Frolov, V.~V.~Zyablov
\paper Bounds on the minimum code distance for nonbinary codes based on bipartite graphs
\jour Probl. Peredachi Inf.
\yr 2011
\vol 47
\issue 4
\pages 27--42
\mathnet{http://mi.mathnet.ru/ppi2058}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2933440}
\transl
\jour Problems Inform. Transmission
\yr 2011
\vol 47
\issue 4
\pages 327--341
\crossref{https://doi.org/10.1134/S0032946011040028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000299373700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856811071}
Linking options:
  • https://www.mathnet.ru/eng/ppi2058
  • https://www.mathnet.ru/eng/ppi/v47/i4/p27
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:539
    Full-text PDF :129
    References:58
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024