Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2011, Volume 47, Issue 2, Pages 72–89 (Mi ppi2046)  

This article is cited in 10 scientific papers (total in 10 papers)

Automata Theory

A linear algebraic approach to multisequence shift-register synthesis

V. R. Sidorenkoab, G. Schmidtc

a Ulm University, Germany
b aKharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
c bEsslingen University of Applied Sciences, Germany
References:
Abstract: An efficient algorithm which synthesizes all shortest linear-feedback shift registers generating $K$ given sequences with possibly different lengths over a field is derived, and its correctness is proved. The proposed algorithm generalizes the Berlekamp–Massey and Feng–Tzeng algorithms and is based on Massey's ideas. The time complexity of the algorithm is $O(K\lambda N)\lesssim O(KN^2)$, where $N$ is the length of a longest sequence and $\lambda$ is the linear complexity of the sequences.
Received: 31.03.2008
Revised: 29.12.2010
English version:
Problems of Information Transmission, 2011, Volume 47, Issue 2, Pages 149–165
DOI: https://doi.org/10.1134/S0032946011020062
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+004.7
Language: Russian
Citation: V. R. Sidorenko, G. Schmidt, “A linear algebraic approach to multisequence shift-register synthesis”, Probl. Peredachi Inf., 47:2 (2011), 72–89; Problems Inform. Transmission, 47:2 (2011), 149–165
Citation in format AMSBIB
\Bibitem{SidSch11}
\by V.~R.~Sidorenko, G.~Schmidt
\paper A linear algebraic approach to multisequence shift-register synthesis
\jour Probl. Peredachi Inf.
\yr 2011
\vol 47
\issue 2
\pages 72--89
\mathnet{http://mi.mathnet.ru/ppi2046}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2857788}
\transl
\jour Problems Inform. Transmission
\yr 2011
\vol 47
\issue 2
\pages 149--165
\crossref{https://doi.org/10.1134/S0032946011020062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000299375200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80051684992}
Linking options:
  • https://www.mathnet.ru/eng/ppi2046
  • https://www.mathnet.ru/eng/ppi/v47/i2/p72
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:342
    Full-text PDF :85
    References:45
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024