Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2011, Volume 47, Issue 1, Pages 40–53 (Mi ppi2036)  

This article is cited in 1 scientific paper (total in 1 paper)

Large Systems

Intersection theorem for finite permutations

V. M. Blinovsky

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
Full-text PDF (230 kB) Citations (1)
References:
Abstract: We find the maximal number of permutations on a set of $n$ elements such that any pair of permutations has at least t common cycles.
Received: 08.07.2010
Revised: 22.11.2010
English version:
Problems of Information Transmission, 2011, Volume 47, Issue 1, Pages 34–45
DOI: https://doi.org/10.1134/S0032946011010042
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.1
Language: Russian
Citation: V. M. Blinovsky, “Intersection theorem for finite permutations”, Probl. Peredachi Inf., 47:1 (2011), 40–53; Problems Inform. Transmission, 47:1 (2011), 34–45
Citation in format AMSBIB
\Bibitem{Bli11}
\by V.~M.~Blinovsky
\paper Intersection theorem for finite permutations
\jour Probl. Peredachi Inf.
\yr 2011
\vol 47
\issue 1
\pages 40--53
\mathnet{http://mi.mathnet.ru/ppi2036}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2815319}
\transl
\jour Problems Inform. Transmission
\yr 2011
\vol 47
\issue 1
\pages 34--45
\crossref{https://doi.org/10.1134/S0032946011010042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289689300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80051623265}
Linking options:
  • https://www.mathnet.ru/eng/ppi2036
  • https://www.mathnet.ru/eng/ppi/v47/i1/p40
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:365
    Full-text PDF :105
    References:62
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024