Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2011, Volume 47, Issue 1, Pages 19–32 (Mi ppi2034)  

This article is cited in 5 scientific papers (total in 5 papers)

Coding Theory

On metric rigidity for some classes of codes

D. I. Kovalevskaya

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk
Full-text PDF (268 kB) Citations (5)
References:
Abstract: A code $C$ in the $n$-dimensional metric space $\mathbb F^n_q$ over the Galois field $GF(q)$ is said to be metrically rigid if any isometry $I\colon C\to\mathbb F^n_q$ can be extended to an isometry (automorphism) of $\mathbb F^n_q$. We prove metric rigidity for some classes of codes, including certain classes of equidistant codes and codes corresponding to one class of affine resolvable designs.
Received: 23.04.2010
Revised: 10.12.2010
English version:
Problems of Information Transmission, 2011, Volume 47, Issue 1, Pages 15–27
DOI: https://doi.org/10.1134/S0032946011010029
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: D. I. Kovalevskaya, “On metric rigidity for some classes of codes”, Probl. Peredachi Inf., 47:1 (2011), 19–32; Problems Inform. Transmission, 47:1 (2011), 15–27
Citation in format AMSBIB
\Bibitem{Kov11}
\by D.~I.~Kovalevskaya
\paper On metric rigidity for some classes of codes
\jour Probl. Peredachi Inf.
\yr 2011
\vol 47
\issue 1
\pages 19--32
\mathnet{http://mi.mathnet.ru/ppi2034}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2815317}
\transl
\jour Problems Inform. Transmission
\yr 2011
\vol 47
\issue 1
\pages 15--27
\crossref{https://doi.org/10.1134/S0032946011010029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289689300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80051613899}
Linking options:
  • https://www.mathnet.ru/eng/ppi2034
  • https://www.mathnet.ru/eng/ppi/v47/i1/p19
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:278
    Full-text PDF :80
    References:37
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024