Loading [MathJax]/jax/output/SVG/config.js
Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2010, Volume 46, Issue 3, Pages 60–79 (Mi ppi2022)  

This article is cited in 13 scientific papers (total in 13 papers)

Coding Theory

Eigenspaces of the discrete Walsh transform

M. S. Bespalov

Vladimir State University
References:
Abstract: We refine the notion of a discrete Walsh function and generalize the notion of a discrete Walsh transform, for which we propose a method for generating a corresponding $W$-matrix. We propose spectral decompositions of the discrete Walsh transform operators in arbitrary enumerations, as well as methods for finding bases of eigenspaces, one of them using a new direct product of matrices. We propose a notation for the fast discrete Walsh transform algorithm in the Paley enumeration. We construct Parseval frames for eigenspaces of the discrete Walsh transform in the Paley enumeration and demonstrate methods for applying them in error detection and correction.
Received: 04.02.2010
Revised: 04.05.2010
English version:
Problems of Information Transmission, 2010, Volume 46, Issue 3, Pages 253–271
DOI: https://doi.org/10.1134/S0032946010030051
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+517.984.5
Language: Russian
Citation: M. S. Bespalov, “Eigenspaces of the discrete Walsh transform”, Probl. Peredachi Inf., 46:3 (2010), 60–79; Problems Inform. Transmission, 46:3 (2010), 253–271
Citation in format AMSBIB
\Bibitem{Bes10}
\by M.~S.~Bespalov
\paper Eigenspaces of the discrete Walsh transform
\jour Probl. Peredachi Inf.
\yr 2010
\vol 46
\issue 3
\pages 60--79
\mathnet{http://mi.mathnet.ru/ppi2022}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2766609}
\transl
\jour Problems Inform. Transmission
\yr 2010
\vol 46
\issue 3
\pages 253--271
\crossref{https://doi.org/10.1134/S0032946010030051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000283175300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958081958}
Linking options:
  • https://www.mathnet.ru/eng/ppi2022
  • https://www.mathnet.ru/eng/ppi/v46/i3/p60
  • This publication is cited in the following 13 articles:
    1. Yabin Xing, Yan Hong, Limin Gao, Ting Gao, Fengli Yan, “Efficient detection for quantum states containing fewer than k unentangled particles in multipartite quantum systems”, Quantum Inf Process, 23:1 (2024)  crossref
    2. S. Ya. Novikov, V. V. Sevost'yanova, “Maltsev equal-norm tight frames”, Izv. Math., 86:4 (2022), 770–781  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. M. S. Bespalov, “Politsirkulyantnye matritsy v diskretnom garmonicheskom analize”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 200, VINITI RAN, M., 2021, 11–28  mathnet  crossref
    4. M. S. Bespalov, K. M. Malkova, “Kodirovanie informatsii matritsami Uolsha”, PDM. Prilozhenie, 2020, no. 13, 121–124  mathnet  crossref
    5. M. S. Bespalov, M. S. Bespalov, “Extraction of Walsh Harmonics by Linear Combinations of Dyadic Shifts”, J Math Sci, 249:6 (2020), 838  crossref
    6. Yu. A. Farkov, M. G. Robakidze, “Parseval Frames and the Discrete Walsh Transform”, Math. Notes, 106:3 (2019), 446–456  mathnet  crossref  crossref  mathscinet  isi  elib
    7. Yu. A. Farkov, “Finite Parseval frames in Walsh analysis”, J. Math. Sci. (N. Y.), 263:4 (2022), 579–589  mathnet  crossref  crossref  zmath
    8. M. S. Bespalov, “New Good's type Kronecker power expansions”, Problems Inform. Transmission, 54:3 (2018), 253–257  mathnet  crossref  isi  elib
    9. M. S. Bespalov, A. S. Golubev, A. S. Pochenchuk, “Derivation of fast algorithms via binary filtering of signals”, Problems Inform. Transmission, 52:4 (2016), 359–372  mathnet  crossref  isi  elib
    10. M. S. Bespalov, “Generating operator for discrete Chrestenson functions”, Problems Inform. Transmission, 51:1 (2015), 37–48  mathnet  crossref  isi  elib
    11. M. S. Bespalov, “Cyclic Operators for Columns of the Matrices of Discrete Transforms”, J Math Sci, 208:1 (2015), 36  crossref
    12. M. S. Bespalov, “On the properties of a new tensor product of matrices”, Comput. Math. Math. Phys., 54:4 (2014), 547–561  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    13. M. S. Bespalov, “Discrete Chrestenson transform”, Problems Inform. Transmission, 46:4 (2010), 353–375  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:954
    Full-text PDF :255
    References:93
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025